Skip to main content

IPMC Actuation Mechanisms and Multi-physical Modeling

  • Chapter
  • First Online:
  • 1415 Accesses

Abstract

This chapter mainly introduces physical deformation theory of IPMC actuator. At first a series of comparative experiments focused on water content and polymer backbones of IPMC were designed and performed to disclose the actuation mechanisms of relaxation and slow anode deformation. Then a multi-physical model was set up which emphasized on water-related transport process and various eigen stresses. Through numerical analysis, inter-coupling between cation and water, pressure and hydration effects were investigated on the transport process. And in contrast to hydrostatic pressure, osmotic pressure and electrostatic stress and their properties with cation and water concentrations were analyzed to explain IPMC deformation evolvement with water content. Finally, model simplification was discussed for deformation prediction in engineering application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Shahinpoor M, Bar-Cohen Y, Simpson JO, Smith J (1998) Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles – a review. Smart MaterStruct 7(6):R15–R30

    Article  CAS  Google Scholar 

  2. Shahinpoor M, Kim KJ (2001) Ionic polymer-metal composites: I. Fundamentals. Smart Mater Struct 10(4):819–833

    Article  CAS  Google Scholar 

  3. Bar-Cohen Y, Leary S, Yavrouian A, Oguro K, Tadokoro S, Harrison J, Smith J, Su J (2000) Challenges to the application of IPMC as actuators of planetary mechanisms. Proc SPIE 3987:140–146

    Article  CAS  Google Scholar 

  4. Shahinpoor M, Kim KJ (2005) Ionic polymer–metal composites: IV. Industrial and medical applications. Smart Mater Struct 14(1):197–214

    Article  CAS  Google Scholar 

  5. Mirfakhrai T, Madden JDW, Baughman RH (2007) Polymer artificial muscles. Mater Today 10(4):30–38

    Article  CAS  Google Scholar 

  6. Calvert P (2009) Hydrogels for soft machines. Adv Mater 21(7):743–756

    Article  CAS  Google Scholar 

  7. Zhu Z, Asaka K, Chang L, Takagi K, Chen H (2013) Physical interpretation of deformation evolvement with water content of ionic polymer-metal composite actuator. J Appl Phys 114(18):184902

    Article  Google Scholar 

  8. Li JY, Nemat-Nasser S (2000) Micromechanical analysis of ionic clustering in Nafion perfluorinated membrane. Mech Mater 32(5):303–314

    Article  Google Scholar 

  9. Nemat-Nasser S (2002) Micromechanics of actuation of ionic polymer-metal composites. J Appl Phys 92(5):2899–2915

    Article  CAS  Google Scholar 

  10. Gennes PG d, Okumura K, Shahinpoor M, Kim KJ (2000) Mechanoelectric effects in ionic gels. Europhys Lett 50(4):513–518

    Article  Google Scholar 

  11. Tadokoro S, Yamagami S, Takamori T, Oguro K (2000) Modeling of Nafion-Pt composite actuators (ICPF) by ionic motion. Proc SPIE 3987:92–102

    Article  CAS  Google Scholar 

  12. Asaka K, Oguro K (2000) Bending of polyelectrolyte membrane platinum composites by electric stimuli: part II. Response kinetics. J Electroanal Chem 480(1–2):186–198

    Article  CAS  Google Scholar 

  13. Yamaue T, Mukai H, Asaka K, Doi M (2005) Electrostress diffusion coupling model for polyelectrolyte gels. Macromolecules 38(4):1349–1356

    Article  CAS  Google Scholar 

  14. Enikov ET, Seo GS (2005) Analysis of water and proton fluxes in ion-exchange polymer–metal composite (IPMC) actuators subjected to large external potentials. Sens Actuators A 122(2):264–272

    Article  CAS  Google Scholar 

  15. Zhu Z, Chang L, Asaka K, Wang Y, Chen H, Zhao H, Li D (2014) Comparative experimental investigation on the actuation mechanisms of ionic polymer–metal composites with different backbones and water contents. J Appl Phys 115(12):124903

    Article  Google Scholar 

  16. Chang L, Chen H, Zhu Z, Li B (2012) Manufacturing process and electrode properties of palladium-electroded ionic polymer–metal composite. Smart Mater Struct 21(6):065018

    Article  Google Scholar 

  17. Zhu Z, Chen H, Wang Y, Luo B, Chang L, Li B (2011) NMR study on the mechanisms of ionic polymer-metal composites deformation with water content. Europhys Lett 96:27005

    Article  Google Scholar 

  18. Okada T, Xie G, Gorseth O, Kjelstrup S, Nakamura N, Arimura T (1998) Ion and water transport characteristics of Nafion membranes as electrolytes. Electrochim Acta 43(24):3741–3747

    Article  CAS  Google Scholar 

  19. Zhu Z, Chen H, Chang L, Li B (2011) Dynamic model of ion and water transport in ionic polymer-metal composites. AIP Adv 1(4):040702

    Article  Google Scholar 

  20. See supplementary material at https://doi.org/10.1063/1.4818412 for the details of the equivalent blocking stress (Part A), the electrostatic stress(Part B), the equation simplification (Part C) and the dynamic transport process of the cation and water (Part D)

    Article  Google Scholar 

  21. Wallmersperger T, Akle BJ, Leo DJ, Kroplin B (2008) Electrochemical response in ionic polymer transducers: an experimental and theoretical study. Compos Sci Technol 68(5):1173–1180

    Article  CAS  Google Scholar 

  22. Pugal D, Kim KJ, Aabloo A (2011) An explicit physics-based model of ionic polymer-metal composite actuators. J Appl Phys 110(8):084904

    Article  Google Scholar 

  23. Zhu Z, Asaka K, Chang L, Takagi K (2013) Multiphysics of ionic polymer–metal composite actuator. J Appl Phys 114:084902

    Article  Google Scholar 

  24. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  25. Gong Y, Tang C-y, Tsui C-p, Fan J (2009) Modelling of ionic polymer–metal composites by a multi-field finite element method. Int J Mech Sci 51:741–751

    Article  Google Scholar 

  26. Toi Y, Kang SS (2005) Finite element analysis of two-dimensional electrochemical–mechanical response of ionic conducting polymer–metal composite beams. Comput Struct 83(31–32):2573–2583

    Article  Google Scholar 

  27. Park JK, Jones PJ, Sahagun C, Page KA, Hussey DS, Jacobson DL, Morgan SE, Moore RB (2010) Electrically stimulated gradients in water and counterion concentrations within electroactive polymer actuators. Soft Matter 6(7):1444–1452

    Article  CAS  Google Scholar 

  28. Porfiri M (2009) Influence of electrode surface roughness and steric effects on the nonlinear electromechanical behavior of ionic polymer metal composites. Phys Rev E 79(4):041503

    Article  Google Scholar 

  29. Choi P, Datta R (2003) Sorption in proton-exchange membranes an explanation of Schroeder’s paradox. J Electrochem Soc 150(12):E601–E607

    Article  CAS  Google Scholar 

  30. Evans CE, Noble RD, Nazeri-Thompson S, Nazeri B, Koval CA (2006) Role of conditioning on water uptake and hydraulic permeability of Nafion® membranes. J Membr Sci 279(1–2):521–528

    Article  CAS  Google Scholar 

  31. Salehpoor K, Shahinpoor M, Razani A (1998) Role of ion transport in actuation of ionic polymeric-platinum composite (IPMC) artificial muscles. SPIE Smart Struct Mater 3330:50–58

    CAS  Google Scholar 

  32. Bonomo C, Fortuna L, Giannone P, Graziani S (2006) A circuit to model the electrical behavior of an ionic polymer-metal composite. IEEE TransCircuits Syst I 53(2):338–350

    Article  Google Scholar 

  33. Asaka K, Nakabo Y, Mukai T, Luo ZW (2003). In Sice Annual Conference (2003), vol. 1–3, pp 1666–1669

    Google Scholar 

  34. Zhu Z, Wang Y, Liu Y, Asaka K, Sun X, Chang L, Lu P (2016) Application-oriented simplification of actuation mechanism and physical model for ionic polymer-metal composites. J Appl Phys 120:034901

    Article  Google Scholar 

  35. Pugal D, Kim KJ, Punning A, Kasemagi H, Kruusmaa M, Aabloo A (2008) A self-oscillating ionic polymer-metal composite bending actuator. J Appl Phys 103:084908

    Article  Google Scholar 

  36. Wallmersperger T, Leo DJ, Kothera CS (2007) Transport modeling in ionomeric polymer transducers and its relationship to electromechanical coupling. J Appl Phys 101:024912

    Article  Google Scholar 

  37. Zhu Z, Chang L, Takagi K, Wang Y, Chen H, Li D (2014) Water content criterion for relaxation deformation of Nafion based ionic polymer metal composites doped with alkali cations. Appl Phys Lett 105(5):054103

    Article  Google Scholar 

  38. Wang Y, Chen H, Wang Y, Zhu Z, Li D (2014) Effect of dehydration on the mechanical and physicochemical properties of gold- and palladium-Ionomeric Polymer-Metal Composite (IPMC) actuators. Electrochim Acta 129:450–458

    Article  CAS  Google Scholar 

  39. Zhu Z, Horiuchi T, Kruusamae K, Chang L, Asaka K (2016) Influence of ambient humidity on the voltage response of ionic polymer–metal composite sensor. J Phys Chem B 120:3215–3225

    Article  CAS  Google Scholar 

  40. Zhao H (2011) Diffuse-charge dynamics of ionic liquids in electrochemical systems. Phys Rev E 84:051504

    Article  Google Scholar 

  41. Pugal D, Solin P, Aabloo A, Kim KJ (2013) IPMC mechanoelectrical transduction: its scalability and optimization. Smart Mater Struct 22:125029

    Article  Google Scholar 

  42. Fotsing YK, Tan X (2012) Bias-dependent impedance model for ionic polymer-metal composites. J Appl Phys 111:124907

    Article  Google Scholar 

  43. Farinholt KM, Leo DJ (2008) Modeling the electrical impedance response of ionic polymer transducers. J Appl Phys 104:014512

    Article  Google Scholar 

  44. Chang L, Asaka K, Zhu Z, Wang Y, Chen H, Li D (2014) Effects of surface roughening on the mass transport and mechanical properties of ionic polymer-metal composite. J Appl Phys 115(24):244901

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zicai Zhu .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

IPMC shows a large negative relaxation (AVI 120604 kb)

IPMC shows a zero relaxation (AVI 120604 kb)

IPMC shows a positive relaxation (AVI 120604 kb)

IPMC shows no relaxation (AVI 120604 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, Z., Chen, H., Chang, L. (2019). IPMC Actuation Mechanisms and Multi-physical Modeling. In: Asaka, K., Okuzaki, H. (eds) Soft Actuators. Springer, Singapore. https://doi.org/10.1007/978-981-13-6850-9_28

Download citation

Publish with us

Policies and ethics