Skip to main content

Magnetic Particle Composite Gels

  • Chapter
  • First Online:
Soft Actuators
  • 1378 Accesses

Abstract

Magnetic soft materials containing solid state magnetic particles demonstrate various motions and magnetorheological behavior in response to magnetic fields. When a rotational magnetic field is applied to magnetic gels containing with magnetized particles, the magnetic gels exhibit rotational motion. When a non-uniform magnetic field is applied to magnetic gels, the elongation of magnetic gels is observed. The rotational motion of magnetic gels can be applied to a fluid pump that delivers water in straight and spiral tubes. A bead of magnetic gels loaded with drugs undergoes accelerated drug release depending on the rotation rates. The elongational motion of magnetic gels can be applied to an elongation-contraction actuator or a microvalve. Under uniform magnetic fields, the magnetic gels show variable viscoelastic behavior depending on the field-strength, which is called the magnetorheological effect. The dynamic modulus of magnetic hydrogels increases by two orders of magnitude synchronized with magnetic fields. The magnetorheological effect of magnetic gels can be applied to haptic devices or intelligent dampers. Actuators and magnetorheological effects of magnetic soft materials consisting of solid state magnetic particles are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zrinyi M, Szabo D, Filipcsei G, Feher J (2002) Electrical and magnetic field-sensitive smart polymer gels. In: Osada Y, Khokhlov AR (eds) Polymer gels and networks. Marcel Dekker, New York, pp 309–355

    Google Scholar 

  2. Zrinyi M (2000) Intelligent polymer gels controlled by magnetic fields. Colloid Polym Sci 278:98–103

    Article  CAS  Google Scholar 

  3. Mitsumata T, Horikoshi Y, Negami K (2007) High-power actuators made of two-phase magnetic gels. Jpn J Appl Phys 43:7257–7261

    Google Scholar 

  4. Mitsumata T, Horikoshi Y, Takimoto J (2007) Flexible fluid pump using magnetic composite gels. e-Polymers 147:1

    Google Scholar 

  5. Mitsumata T, Kakiuchi Y, Takimoto J (2008) Fast drug release using rotational motion of magnetic gel beads. Res Lett Phys Chem. doi:https://doi.org/10.1155/2008/671642

    Article  Google Scholar 

  6. Shiga T, Okada A, Kurauchi T (1995) Magnetroviscoelastic behavior of composite gels. J Appl Polym Sci 58:787–792

    Article  CAS  Google Scholar 

  7. Jolly MR, Carlson JD, Munoz BC (1996) A model of the behaviour of magnetorheological materials. Smart Mater Struct 5:607–614

    Article  CAS  Google Scholar 

  8. Ginder JM, Clark SM, Schlotter WF, Nichols ME (2002) Magnetostrictive phenomena in magnetorheological elastomers. Int J Modern Phys B 16:2412–2418

    Article  CAS  Google Scholar 

  9. Bossis G, Bellan C (2002) Field dependence of viscoelastic properties of MR elastomers. Int J Modern Phys B 16:2447–2453

    Article  Google Scholar 

  10. Lokander M, Stenberg B (2003) Improving the magnetorheological effect in isotropic magnetorheological rubber materials. Polym Test 22:677–680

    Article  CAS  Google Scholar 

  11. Mitsumata T, Ikeda K, Gong JP, Osada Y, Szabo D, Zrinyi M (1999) Magnetism and compressive modulus of magnetic fluid containing gels. J Appl Phys 85:8451–8455

    Article  CAS  Google Scholar 

  12. Calcagnile P, Fragouli D, Bayer IS, Anyfantis GC, Martiradonna L, Cozzoli PD, Cingolani R, Athanassiou A (2012) Magnetically driven floating foams for the removal of oil contaminants from water. Nano Lett 6:5413–5419

    CAS  Google Scholar 

  13. Horikoshi Y, Mitsumata T, Takimoto J (2007) Developments for a fluid valve using magnetic gels. Trans Mater Res Soc Jpn 32:843–844

    Google Scholar 

  14. Mitsumata T, Abe N (2009) Magnetic-field sensitive gels with wide modulation of dynamic modulus. Chem Lett 38:922–923

    Article  CAS  Google Scholar 

  15. Mitsumata T, Honda A, Kanazawa H, Kawai M (2012) Magnetically tunable elasticity for magnetic hydrogels consisting of carrageenan and carbonyl iron particles. J Phys Chem B 116:12341–12348

    Article  CAS  Google Scholar 

  16. Krieger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans Soc Rheol 3:137–152

    Article  CAS  Google Scholar 

  17. Mitsumata T, Kosugi Y, Ouchi S (2009) Effect of particles alignment on giant reduction in dynamic modulus of hydrogels containing needle-shaped magnetic particles. Prog Colloid Polym Sci 136:163–170

    CAS  Google Scholar 

  18. Mitsumata T, Sakai K, Takimoto J (2006) Giant reduction in dynamic modulus of κ-carrageenan magnetic gels. J Phys Chem B 110:20217–20223

    Article  CAS  Google Scholar 

  19. Mitsumata T, Wakabayashi T, Okazaki T (2008) Particle dispersibility and giant reduction in dynamic modulus of magnetic gels containing barium ferrite and iron oxide particles. J Phys Chem B 112:14132–14139

    Article  CAS  Google Scholar 

  20. Mitsumata T, Abe N (2011) Giant and reversible magnetorheology of carrageenan/iron oxide magnetic gels. Smart Mater Struct. doi:https://doi.org/10.1088/0964-1726/20/12/124003

    Article  Google Scholar 

  21. Stepanov G, Borin D, Odenbach S (2009) Magnetorheological effect of magneto-active elastomers containing large particles. J Phys Conf Ser 149:012098

    Article  Google Scholar 

  22. Chiba N, Yamamoto K, Hojo T, Kawai M, Mitsumata T (2013) Wide-range modulation of dynamic modulus and loss tangent for magnetic elastomers containing submilimeter magnetic particles. Chem Lett 42:253–254

    Article  CAS  Google Scholar 

  23. Mitsumata T, Ohori S (2011) Magnetic polyurethan elastomers with wide range modulation of elasticity. Polym Chem 2:1063–1067

    Article  CAS  Google Scholar 

  24. Mitsumata T, Ohori S, Honda A, Kawai M (2013) Magnetism and viscoelasticity of magnetic elastomers with wide range modulation of dynamic modulus. Soft Mater 9:904–912

    Article  CAS  Google Scholar 

  25. Masuda Y, Kikuchi T, Kobayashi W, Amano K, Mitsumata T, Ohori S (2012) Design and evaluation of unit for haptic device on foot. Paper presented at the 2012 IEEE/SICE international symposium on system integration, Fukuoka, 16–18 December 2012

    Google Scholar 

  26. Ulicny JC, Snavely KS, Golden MA, Klingenberg DJ (2010) Enhancing magnetorheology with nonmagnetizable particles. Appl Phys Lett. doi:https://doi.org/10.1063/1.3431608

    Article  Google Scholar 

  27. Ohori S, Fujisawa K, Kawai M, Mitsumata T (2013) Magnetoelastic behavior of bimodal magnetic hydrogels using nonmagnetic particles. Chem Lett 42:50–51

    Article  CAS  Google Scholar 

  28. Walsh PL, Lamancusa JS (1992) A variable stiffness vibration absorber for minimization of transient vibrations. J Sound Vib 158:195–211

    Article  Google Scholar 

  29. Negami K, Mitsumata T (2011) Magnetorheological behavior of magnetic carrageenan gels against shear and compression strains. e-Polymers 034:1

    Google Scholar 

Download references

Acknowledgement

This research was partially supported by a Grant-in-Aid for Scientific Research of Priority Areas 438 from Next-Generation Actuators Leading Breakthroughs and a Grand-in-Aid for Scientific Research (B) (Proposal No. 23360051). The author is grateful for Dr. T. Okazaki of Bando Chemicals, Mr. T. Hojo and Mr. K. Yamamoto of Panasonic Electric Works for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsu Mitsumata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitsumata, T. (2019). Magnetic Particle Composite Gels. In: Asaka, K., Okuzaki, H. (eds) Soft Actuators. Springer, Singapore. https://doi.org/10.1007/978-981-13-6850-9_21

Download citation

Publish with us

Policies and ethics