Skip to main content

Photomechanical Energy Conversion with Cross-Linked Liquid-Crystalline Polymers

  • Chapter
  • First Online:
  • 1367 Accesses

Abstract

Cross-linked liquid-crystalline (LC) polymers with a photochromic moiety show photoinduced deformation with change in molecular shape and alignment of photochromic compounds. Molecular-level photoisomerization of the photochromic moieties can give rise to macroscopic deformation of the materials, allowing one to convert light energy directly into mechanical work. The photomechanical effects extend the applicability of azobenzene-containing polymers towards light-driven actuators and artificial muscles. Recently, the effect of structure–property relationships and crosslinking density on the photomechanical property of photochromic polymers was investigated. Various motions based on the photoinduced deformation of the LC polymers were achieved by forming the polymer materials. This chapter summarizes the recent progress in photoinduced movements and light-driven actuation property of the LC polymers, in particular cross-linked LC polymers with a photochromic property.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hagfeldt A, Boschloo G, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6596–6663

    Article  Google Scholar 

  2. Li M-H, Keller P, Li B, Wang X, Brunet M (2003) Light-driven side-on nematic elastomer actuators. Adv Mater 15:569–572

    Article  CAS  Google Scholar 

  3. Ikeda T, Mamiya J, Yu Y (2007) Photomechanics of liquid-crystalline elastomers and other polymers. Angew Chem Int Ed 46:506–528

    Article  CAS  Google Scholar 

  4. Osada Y, Okuzaki H, Hori H (1992) A polymer gel with electrically driven motility. Nature 355:242–244

    Article  CAS  Google Scholar 

  5. Osada Y, Derossi DEE (2000) Polymer sensors and actuators. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  6. Osada Y, Khokhlov AR (2002) Polymer gels and networks. Marcel Dekker, New York

    Google Scholar 

  7. Baughman RH (1996) Conducting polymer artificial muscles. Synth Met 78:339–353

    Article  CAS  Google Scholar 

  8. Lu W, Fadeev AG, Qi B, Smela E, Mattes BR, Ding J, Spinks GM, Mazurkiewicz J, Zhou D, Wallace GG, MacFarlane DR, Forsyth SA, Forsyth M (2002) Use of ionic liquids for π-conjugated polymer electrochemical devices. Science 297:983–987

    Article  CAS  Google Scholar 

  9. Smela E (2003) Conjugated polymer actuators for biomedical applications. Adv Mater 15:481–494

    CAS  Google Scholar 

  10. Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, De Rossi D, Rinzler AG, Jaschinski O, Roth S, Kertesz M (1999) Carbon nanotube actuators. Science 284:1340–1344

    Article  CAS  Google Scholar 

  11. Kim P, Lieber CM (1999) Nanotube nanotweezers. Science 286:2148–2150

    Article  CAS  Google Scholar 

  12. Zhang Y, Iijima S (1999) Elastic response of carbon nanotube bundles to visible light. Phys Rev Lett 82:3472–3475

    Article  CAS  Google Scholar 

  13. Spinks GM, Wallace GG, Fifield LS, Dalton LR, Mazzoldi A, De Rossi D, Khayrullin II, Baughman RH (2002) Pneumatic carbon nanotube actuators. Adv Mater 14:1728–1732

    Article  CAS  Google Scholar 

  14. Pelrine R, Kornbluh R, Pei Q, Joseph J (2000) High-speed electrically actuated elastomers with strain greater than 100 %. Science 287:836–839

    Article  CAS  Google Scholar 

  15. Liu C (2007) Recent developments in polymer MEMS. Adv Mater 19:3783–3790

    Article  CAS  Google Scholar 

  16. Zentel R (1989) Liquid-crystalline elastomers. Adv Mater 10:321–329

    Article  Google Scholar 

  17. Kelly SM (1995) Anisotropic networks. J Mater Chem 5:2047–2061

    Article  CAS  Google Scholar 

  18. Warner M, Terentjev EM (1996) Nematic elastomers - a new state of matter? Prog Polym Sci 21:853–891

    Article  CAS  Google Scholar 

  19. Cotton JP, Hardouin F (1997) Chain conformation of liquid crystalline polymers studied by small-angle neutron scattering. Prog Polym Sci 22:795–828

    Article  CAS  Google Scholar 

  20. Terentjev EM (1999) Liquid-crystalline elastomers. J Phys Condens Matter 11:R239–R257

    Article  CAS  Google Scholar 

  21. Xie P, Zhang R (2005) Liquid crystal elastomers, networks and gels: advanced smart materials. J Mater Chem 15:2529–2550

    Article  CAS  Google Scholar 

  22. Finkelmann H (1998) Physical properties of liquid crystalline elastomers. Wiley-VCH, New York

    Google Scholar 

  23. Warner M, Terentjev EM (2003) Liquid crystal elastomers. Oxford University Press, UK

    Google Scholar 

  24. Küpfer J, Finkelmann H (1994) Liquid crystal elastomers: influence of the orientational distribution of the crosslinks on the phase behavior and reorientation processes. Macromol Chem Phys 195:1353–1367

    Article  Google Scholar 

  25. Wermter H, Finkelmann H (2001) Liquid crystalline elastomers as artificial muscles. e-Polymers no. 013

    Google Scholar 

  26. Yoshino T, Kondo M, Mamiya J, Kinoshita M, Yu Y, Ikeda T (2010) Three-dimensional photomobility of crosslinked azobenzene liquid-crystalline polymer films. Adv Mater 22:1361–1363

    Article  CAS  Google Scholar 

  27. Kondo M, Yu Y, Ikeda T (2006) How does the initial alignment of mesogens affect the photoinduced bending behavior of liquid-crystalline elastomers? Angew Chem Int Ed 45:1378–1382

    Article  CAS  Google Scholar 

  28. Yu Y, Nakano M, Ikeda T (2003) Directed bending of a polymer film by light. Nature 425:145

    Article  CAS  Google Scholar 

  29. Irie M (2000) Photochromism: memories and switches – introduction. Chem Rev 100:1683

    Article  CAS  Google Scholar 

  30. Ikeda T (2003) Photomodulation of liquid crystal orientations for photonic applications. J Mater Chem 13:2037–2057

    Article  CAS  Google Scholar 

  31. Natansohn A, Rochon P (2002) Photoinduced motions in azo-containing polymers. Chem Rev 102:4139–4175

    Article  CAS  Google Scholar 

  32. Shibaev V, Bobrovsky A, Boiko N (2003) Photoactive liquid crystalline polymer systems with light-controllable structure and optical properties. Prog Polym Sci 28:729–836

    Article  CAS  Google Scholar 

  33. Li Y, He Y, Tong X, Wang X (2005) Photoinduced deformation of amphiphilic azo polymer colloidal spheres. J Am Chem Soc 127:2402–2403

    Article  CAS  Google Scholar 

  34. Li Y, He Y, Tong X, Wang X (2006) Stretching effect of linearly polarized Ar+ laser single-beam on azo polymer colloidal spheres. Langmuir 22:2288–2291

    Article  CAS  Google Scholar 

  35. Van der Veen G, Prins W (1971) Photomechanical energy conversion in a polymer membrane. Nat Phys Sci 230:70–72

    Article  Google Scholar 

  36. Van der Veen G, Prins W (1974) Photoregulation of polymer conformation by photoshromic moieties – I. Anionic ligand to an anionic polymer. Photochem Photobiol 19:191–196

    Article  Google Scholar 

  37. Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41:2034–2057

    Article  CAS  Google Scholar 

  38. Lendlein A, Jiang H, Jünger O, Langer R (2005) Light-induced shape-memory polymers. Nature 434:879–882

    Article  CAS  Google Scholar 

  39. He J, Zhao Y, Zhao Y (2009) Photoinduced bending of a coumarin-containing supramolecular polymer. Soft Mater 5:308–310

    Article  CAS  Google Scholar 

  40. Kondo M, Matsuda T, Fukae R, Kawatsuki N (2010) Photoinduced deformation of polymer fibers with anthracene side groups. Chem Lett 39:234–235

    Article  CAS  Google Scholar 

  41. Ahir SV, Terentjev EM (2005) Photomechanical actuation in polymer-nanotube composites. Nat Mater 4:491–495

    Article  CAS  Google Scholar 

  42. Nakata K, Sakai M, Ochiai T, Murakami T, Fujishima A (2012) Bending motion of a polyacrylamide/graphite fiber driven by a wide range of light from UV to NIR. Mater Lett 74:68–70

    Article  CAS  Google Scholar 

  43. Torras N, Zinoviev KE, Marshall JE, Terentjev EM, Esteve J (2011) Bending kinetics of a photo-actuating nematic elastomer cantilever. Appl Phys Lett 99:254102

    Article  Google Scholar 

  44. Wang W, Sun X, Wu W, Peng H, Yu Y (2012) Photoinduced deformation of cross-linked liquid-crystalline polymer film oriented by a highly aligned carbon nanotube sheet. Angew Chem Int Ed 51:4644–4647

    Article  CAS  Google Scholar 

  45. Loomis J, Fan X, Khorsavi F, Xu P, Fletcher M, Cohn RW, Panchapakesan B (2013) Graphene/elastomer composite-based photo-thermal nanopositioners. Sci Rep. doi: https://doi.org/10.1038/srep01900

    Article  PubMed  PubMed Central  Google Scholar 

  46. Küpfer J, Nishikawa E, Finkelmann H (1994) Densely cross-linked liquid-crystal elastomers. Polym Adv Technol 5:110–115

    Article  Google Scholar 

  47. de Gennes P-G (1975) Physique moleculaire. C R Acad Sci B 281:101–103

    Google Scholar 

  48. Finkelmann H, Kock H-J, Rehage G (1981) Investigation on liquid crystalline polysiloxanes 3 liquid crystalline elastomers – a new type of liquid crystalline material. Makromol Chem Rapid Commun 2:317–322

    Article  CAS  Google Scholar 

  49. Zentel R, Reckert G (1986) Liquid crystalline elastomers based on liquid crystalline side group, main chain and combined polymers. Makromol Chem 187:1915–1926

    Article  CAS  Google Scholar 

  50. Zentel R, Benalia M (1987) Stress-induced orientation in highly cross-linked liquid-crystalline side group polymers. Makromol Chem 188:665–674

    Article  CAS  Google Scholar 

  51. Broer DJ, Finkelmann H, Kondo K (1988) In-situ photopolymerization of an oriented liquid-crystalline acrylate. Makromol Chem 189:185–194

    Article  CAS  Google Scholar 

  52. Küpfer J, Finkelmann H (1991) Nematic liquid single crystal elastomers. Makromol Chem Rapid Commun 12:717–726

    Article  Google Scholar 

  53. Kondo M, Miyasato R, Naka Y, Mamiya J, Kinoshita M, Yu Y, Barrett C, Ikeda T (2009) Photomechanical properties of azobenzene liquid-crystalline elastomers. Liq Cryst 36:1289–1293

    Article  CAS  Google Scholar 

  54. Shimamura A, Priimagi A, Mamiya J, Ikeda T, Yu Y, Barrett CJ, Shishido A (2011) Simultaneous analysis of optical and mechanical properties of cross-linked azobenzene-containing liquid-crystalline polymer films. ACS Appl Mater Interfaces 3:4190–4196

    Article  CAS  Google Scholar 

  55. White TJ, Tabiryan NV, Serak SV, Hrozhyk UA, Tondiglia VP, Koerner H, Vaia RA, Bunning TJ (2008) A high frequency photodriven polymer oscillator. Soft Mater 4:1796–1798

    Article  CAS  Google Scholar 

  56. Hosono N, Kajitani T, Fukushima T, Ito K, Sasaki S, Takata M, Aida T (2010) Large-area three-dimensional molecular ordering of a polymer brush by one-step processing. Science 330:808–811

    Article  CAS  Google Scholar 

  57. Yamada M, Kondo M, Mamiya J, Yu Y, Kinoshita M, Barrett CJ, Ikeda T (2008) Photomobile polymer materials: towards light-driven plastic motors. Angew Chem Int Ed 47:4986–4988

    Article  CAS  Google Scholar 

  58. Yamada M, Kondo M, Miyasato R, Naka Y, Mamiya J, Kinoshita M, Shishido A, Yu Y, Barrett CJ, Ikeda T (2009) Photomobile polymer materials-various three-dimensional movements. J Mater Chem 19:60–62

    Article  CAS  Google Scholar 

  59. Cheng F, Yin R, Zhang Y, Yen C, Yu Y (2010) Fully plastic microrobots which manipulate objects using only visible light. Soft Mater 6:3447–3449

    Article  CAS  Google Scholar 

  60. van Oosten CL, Bastiaansen CWM, Broer DJ (2009) Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat Mater 8:677–682

    Article  Google Scholar 

  61. Yan Z, Ji X, Wu W, Wei J, Yu Y (2012) Light-switchable behavior of a microarray of azobenzene liquid crystal polymer induced by photodeformation. Macromol Rapid Commun 33:1362–1367

    Article  CAS  Google Scholar 

  62. Naka Y, Mamiya J, Shishido A, Washio M, Ikeda T (2011) Direct fabrication of photomobile polymer materials with an adhesive-free bilayer structure by electron-beam irradiation. J Mater Chem 21:1681–1683

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ichi Mamiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mamiya, Ji. (2019). Photomechanical Energy Conversion with Cross-Linked Liquid-Crystalline Polymers. In: Asaka, K., Okuzaki, H. (eds) Soft Actuators. Springer, Singapore. https://doi.org/10.1007/978-981-13-6850-9_18

Download citation

Publish with us

Policies and ethics