Skip to main content

Thermal and Electrical Actuation of Liquid Crystal Elastomers/Gels

  • Chapter
  • First Online:
Soft Actuators
  • 1551 Accesses

Abstract

This review describes the thermal and electrical actuation of liquid crystal elastomers (LCEs) which have the strong coupling between the macroscopic shape and LC alignment. Various types of thermal deformation such as elongation/contraction, bending, and torsion are driven by controlling the director configuration in LCEs. The periodic surface undulation is thermally induced using the helical director configuration in cholesteric elastomers. The nematic elastomers with polydomain alignment, which are prepared in the high-temperature isotropic state, undergo the realignment of local directors at modest strengths of external field, resulting in the electrically driven deformation. The cholesteric gels with helical director configuration exhibit the pronounced electro-optical effects for selective reflection coupled to electromechanical effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Warner M, Terentjev EM (2007) Liquid crystals elastomers (revised edition). Clarendon Press, London

    Google Scholar 

  2. Oswald P, Pieranski P (2005) Nematic and cholesteric liquid crystals. CRC Press, Boca Raton

    Book  Google Scholar 

  3. Treloar LRG (1975) The physics of rubber elasticity, 3rd edn. Clarendon Press, Oxford

    Google Scholar 

  4. White TJ, Broer DJ (2015) Nat Mater 14:1087

    Article  CAS  Google Scholar 

  5. Kularatne RS, Kim H, Boothby JM, Ware TH (2017) J Polym Sci Part B Polym Phys 55:395

    Article  CAS  Google Scholar 

  6. Shahsavan H, Yu L, Jákli A, Zhao B (2017) Soft Matter 13:8006

    Article  CAS  Google Scholar 

  7. Prévôt ME, Ustunel S, Hegmann E (2018) Materials (Basel) 11:1

    Article  Google Scholar 

  8. Kupfer J, Finkelmann H (1991) Makromol Chem-Rapid Commun 12:717

    Article  Google Scholar 

  9. Buguin A, Li MH, Silberzan P, Ladoux B, Keller P (2006) J Am Chem Soc 128:1088

    Article  CAS  Google Scholar 

  10. Urayama K, Arai YO, Takigawa T (2005) Macromolecules 38:3469

    Article  CAS  Google Scholar 

  11. Sawa Y, Ye F, Urayama K, Takigawa T, Gimenez-Pinto V, Selinger RLB, Selinger JV (2011) Proc Natl Acad Sci U S A 108:6364

    Article  CAS  Google Scholar 

  12. Hasson CD, Davis FJ, Mitchell GR (1998) Chem Commun:2515

    Google Scholar 

  13. Urayama K (2013) React Funct Polym 73:885

    Article  CAS  Google Scholar 

  14. Wermter H, Finkelmann H (2001) E-Polymers 013

    Google Scholar 

  15. Clarke SM, Hotta A, Tajbakhsh AR, Terentjev EM (2001) Phys Rev E 64:61702

    Article  CAS  Google Scholar 

  16. Tsuchitani A, Ashida H, Urayama K (2015) Polym (UK) 61:29

    Article  CAS  Google Scholar 

  17. Zhu B, Barnes MG, Kim H, Yuan M, Ardebili H, Verduzco R (2017) Sensors Actuators B Chem 244:433

    Article  CAS  Google Scholar 

  18. Sawa Y, Urayama K, Takigawa T, Desimone A, Teresi L (2010) Macromolecules 43:4362

    Article  CAS  Google Scholar 

  19. Sawa Y, Urayama K, Takigawa T, Gimenez-Pinto V, Mbanga BL, Ye F, Selinger JV, Selinger RLB (2013) Phys Rev E Stat Nonlinear Soft Matter Phys 88:022502

    Article  Google Scholar 

  20. Ghafouri R, Bruinsma R (2005) Phys Rev Lett 94:138101

    Article  Google Scholar 

  21. Teresi L, Varano V (2013) Soft Matter 9:3081

    Article  CAS  Google Scholar 

  22. Kim ST, Finkelmann H (2001) Macromol Rapid Commun 22:429

    Article  CAS  Google Scholar 

  23. Bourgerette C, Chen B, Finkelmann H, Mitov M, Schmidtke J, Stille W (2006) Macromolecules 39:8163

    Article  CAS  Google Scholar 

  24. Nagai H, Urayama K (2015) Phys Rev E Stat Nonlinear Soft Matter Phys 92:022501

    Article  Google Scholar 

  25. Nagai H, Liang X, Nishikawa Y, Nakajima K, Urayama K (2016) Macromolecules 49:9561

    Article  CAS  Google Scholar 

  26. Liu D, Broer DJ (2014) Angew Chem 126:4630

    Article  Google Scholar 

  27. Lehmann W, Skupin H, Tolksdorf C, Gebhard E, Zentel R, Kruger P, Losche M, Kremer F (2001) Nature 410:447

    Article  CAS  Google Scholar 

  28. Kohler R, Stannarius R, Tolksdorf C, Zentel R (2005) Appl Phys A Mater Sci Process 80:381

    Article  Google Scholar 

  29. Na YH, Aburaya Y, Orihara H, Hiraoka K (2011) Phys Rev E 83:61709

    Article  Google Scholar 

  30. Spillmann CM, Naciri J, Ratna BR, Selinger RLB, Selinger JV (2016) J Phys Chem B 120:6368

    Article  CAS  Google Scholar 

  31. Okamoto T, Urayama K, Takigawa T (2011) Soft Matter 7:10585

    Article  CAS  Google Scholar 

  32. Urayama K, Kohmon E, Kojima M, Takigawa T (2009) Macromolecules 42:4084

    Article  CAS  Google Scholar 

  33. Higaki H, Urayama K, Takigawa T (2012) Macromol Chem Phys 213:1907

    Article  CAS  Google Scholar 

  34. Urayama K (2011) Adv Polym Sci 250:119

    Article  Google Scholar 

  35. Fuchigami Y, Takigawa T, Urayama K (2014) ACS Macro Lett 3:813

    Article  CAS  Google Scholar 

  36. McConney ME, Tondiglia VP, Natarajan LV, Lee KM, White TJ, Bunning TJ (2013) Adv Opt Mater 1:417

    Article  Google Scholar 

  37. Ware TH, McConney ME, Wie JJ, Tondiglia VP, White TJ (2015) Science 347:982

    Article  CAS  Google Scholar 

  38. De Haan LT, Gimenez-Pinto V, Konya A, Nguyen TS, Verjans JMN, Sánchez-Somolinos C, Selinger JV, Selinger RLB, Broer DJ, Schenning APHJ (2014) Adv Funct Mater 24:1251

    Article  Google Scholar 

  39. Kowalski BA, Mostajeran C, Godman NP, Warner M, White TJ (2018) Phys Rev E 97:1

    Article  Google Scholar 

Download references

Acknowledgment

This work was partly supported by a Grant-in-Aid for Challenging Exploratory Research (Grant No. 16K14080) from the Japan Society for the Promotion of Science and a Grant-in-Aid for Scientific Research (B) (Grant No. 18H02034) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Urayama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Urayama, K. (2019). Thermal and Electrical Actuation of Liquid Crystal Elastomers/Gels. In: Asaka, K., Okuzaki, H. (eds) Soft Actuators. Springer, Singapore. https://doi.org/10.1007/978-981-13-6850-9_16

Download citation

Publish with us

Policies and ethics