Skip to main content

Strategies for Combating Climate Change

  • Chapter
  • First Online:
Sustainable Agriculture, Forest and Environmental Management

Abstract

The confusing and increasingly unpredictable climatic conditions and unsustainable human activities have created adverse impacts on the environment. Recent researches by the Columbia University (2018) showed that the earth is in the midst of a 40-year-long global warming drift instigated by human activities. As per NASA report since 1880 climate change records began, the first half of the last 4 years – 2015, 2016, 2017 and 2018 – all take the highest four hottest recorded periods ever documented. Presently, the average surface temperature on earth between January and June, 2018, is the third hottest half-year on record. Major issues such as natural hazards have been triggered by unguarded anthropogenic activities. This has awakened the public to the reality of a threatened environment as the effects of these problems continue to increase. Added to these, there are emissions from gasoline vehicles and industrial activities which give off huge amounts of hydrocarbons which can contribute to health problems. These corresponding global consequences of climate change issues have increased the need for nations to stride towards compulsory climate change responsibility and strategies to minimize these effects. Research and studies need to be designed considering future climatic trends as well as policies for environmental management and sustainability.

Hence, this chapter orchestrates the salient information about components of environmental management and agroforestry as adaptation measures for the minimization of climate change. Environmental management measures elaborated in this study include the enforcement of polices on air quality and land degradation and the minimization of automobiles and industrial waste emissions that hugely contribute to atmospheric pollution of hydrocarbons. Agroforestry measures discussed on include the promotion of afforestation, agriculture, intensive forestry activities, environmental greening and conserving existing forest reserves in both rural and urban areas. These measures are highlighted as having the capability of minimizing climate change by reducing the extent to which greenhouse gases (GHG) deplete the ozone layer that protects the earth. Obviously, the implementation of key policies and making investments will effectively deal with climate change. The phasing out of fossil fuel automobiles, campaigns against deforestation/tree felling, energy efficiency, technology application and capacity building and information dissemination are basically expedient measures for global climate resilience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFS:

Agroforestry systems

C:

Carbon

CDM:

Clean development mechanism

CFCs:

Chlorofluorocarbons

CO2 :

Carbon dioxide

CSP:

Carbon sequestration potential

GHG:

Greenhouse gases

HI:

Hedgerow intercropping

PAH:

Polynuclear aromatic hydrocarbon

PAN:

Peroxyacetyl nitrate

PAs:

Protected areas

REDD:

Reducing emission from deforestation and forest degradation

SOC:

Soil organic carbon

UNFCCC:

United Nations Framework Convention on Climate Change

References

  • Abdel-Shafy H, Mansour MS (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25:107–123

    Article  Google Scholar 

  • Ajayi OC, Place F, Akinnifes FK, Sileshi W (2011) Agricultural success from Africa; the case of fertilized tree system in southern Africa (Malain, Tanzania, Mosambque, Zambia and Zimbabwe). Int J Agric Sustain 9:129–130

    Article  Google Scholar 

  • Akanwa AO, Okeke FI, Nnodu VC, Iortyom ET (2017) Quarrying and its effect on vegetation cover for a sustainable development using high resolution satellite image and GIS. J Environ Earth Sci 76:1–12

    Article  Google Scholar 

  • Akanwa AO, Ikegbunam FI (2017a) Environmental crisis associated with sand harvesting activities in Awka north settlement area in Anambra state. International Journal of Economic Growth and Environmental Issues (EGEI) 5:114–125

    Google Scholar 

  • Akanwa AO, Ikegbunam FI (2017b) Adverse effects of unregulated aggregate exploitation in south-eastern Nigeria. EPRA International Journal of Research and Development (IJRD) 2(3):167–177

    Google Scholar 

  • Akanwa AO, Ezeomedo (2018) Changing climate and the effect of gully Erosion on Akpo community farmers. Journal of Ecology and Natural Resources Medwin Publishers 2(6):2–12

    Google Scholar 

  • Akanwa AO, Mba HC, Ogbuene EB, Nwachukwu MU, Anukwonke CC (2019) Potential of agroforestry and environmental greening for climate change minimization. In: Abhishek R et al (eds) Climate change impact and agroforestry system. International Standard, CRC-Apple Academic Press and Taylor & Francis, UK, p Approx. 389. isbn:9781771888226

    Google Scholar 

  • Albrecht A, Kandji ST (2003) Carbon sequestration in tropical agroforestry system. Agric Ecosyst Environ 99:15–27

    Article  CAS  Google Scholar 

  • Alegre JC, Rao MR (1996) Soil and water conservation by contour hedging in the humid tropic of Peru. Agric Ecosyst Environ 57:17–25

    Article  Google Scholar 

  • Amdur MO (1986) Air pollution. In: Klassen CD, Amdur MO, Doull J (eds). Casarett and Doull’s toxicology: the basic science of poisoning, 3rd edn. Mac Millian, New York. American Chemical Society. 1972 Photochemical smog and ozone reaction Am Chem Soc 113 Washington, DC

    Google Scholar 

  • Arellano P, Tansey K, HeikoBalzter Boyd DS (2015) Detecting the effects of hydrocarbon pollution in the Amazon forest using hyper spectral satellite images. Environ Pollut 25:225–239

    Article  CAS  Google Scholar 

  • Ashoka P, Meena RS, Kumar S, Yadav GS, Layek J (2017) Green nanotechnology is a key for eco-friendly agriculture. J Clean Prod 142:4440–4441

    Article  Google Scholar 

  • Association for Temperate Agroforestry (AFTA) (1997) The status, opportunities and needs for agroforestry in the United States. AFTA, Columbia

    Google Scholar 

  • Asthana DK, Asthana M (2012) Environment, problems and solutions. Chand & Company, New Delhi

    Google Scholar 

  • Baggio A, Heuveldop J (1984) Initial Performance of Calliandra calothyrsus Meissm in live fences for the production of biomass. Martinus Nijhoff, The Hague

    Google Scholar 

  • Bai ZG, Dent DL, Olsson L, Schaepman ME (2008) Proxy global assessment of land degradation. Soil Use Manage 24:223–234

    Article  Google Scholar 

  • Baijukya FP, Piters BDS (1998) Nutrient balances and their consequences in the banana-based land use systems of Bukoba district, northwest Tanzania. Agric Ecosyst Environ 71:147–158

    Article  Google Scholar 

  • Bass S, Dubois O, Costa, PM, Pinard M, Tipper R, Wilson C (2000) Rural Livelihoods and Carbon Management. International Institute for Environment and Development, London

    Google Scholar 

  • Baumgärtner S, Quaas MF (2010) Managing increasing environmental risks through agro-biodiversity and agri-environmental policies. Agric Econ 41:483–496

    Article  Google Scholar 

  • Beer J (1987) Advantages, disadvantages and desirable characteristics of shade trees for coffee, cocoa and tea. Agrofor Syst 5:3–13

    Article  Google Scholar 

  • Beer J, Bonnemann A, Chavez W, Fassbender HW, Imbach AC, Martel I (1990) Modelling agroforestry system of cocoa (Theobroma cacao) with laurel (Cordia alliadora) or Poro (Erythrina poeppigiana) in Costa Rica productivity indices, organic material models and sustainability over ten years. Agrofor Syst 12:229–249

    Article  Google Scholar 

  • Bobojonov I (2009) Modeling crop and water allocation under uncertainty in irrigated agriculture: a case study on the Khorezm Region, Uzbekistan, Central Asia. Center for Development Research (ZEF)

    Google Scholar 

  • Bonsang B, Boissard C (1999) Global distribution of reactive hydrocarbons in the atmosphere. In: Hewitt N (ed) Reactive hydrocarbons in the atmosphere. Academic, London, pp 209–265

    Chapter  Google Scholar 

  • Brulle RJ, Pellow DN (2006) Environmental justice: human health and environmental inequalities. Annu Rev Public Health 27:103–124

    Article  PubMed  Google Scholar 

  • Bubier JL, Moore TR (1994) An ecological perspective on methane emissions from northern wetlands. Trends Ecol Evol 9:460–464

    Article  CAS  PubMed  Google Scholar 

  • Buckeridge DL, Glazier R, Harvey BJ, Escobar M, Amrhein C, Frank J (2002) Effect of motor vehicle emissions on respiratory health in an urban area. Environ Health Perspect 110:293–300

    Article  PubMed  PubMed Central  Google Scholar 

  • Cabbage F, Balmelli G, Bussoni A, Noellemeyer E, Pachas AN, Fassola H, Colcombet L, Ressner B, Frey G, Dube F, de Silva ML, Stevenson H, Hamilton J, Hubbard W (2013) Comparing silvopastoral system and prospects in eight regions of the world. Agrofor Syst 86:303–314

    Article  Google Scholar 

  • Cairns MA, Meganck RA (1999) Carbon sequestration, biological diversity, and sustainable development: integrated forest management. Environ Manag 18:13–22

    Article  Google Scholar 

  • Castro LM, Calvas B, Hildebrandt P, Knoke T (2013) Avoiding the loss of shade coffee plantations: how to derive conservation payments for risk-averse land-users. Agrofor Syst 87(2):331–347. https://doi.org/10.1007/s10457-012-9554-0

    Article  Google Scholar 

  • Center for Landscape Research (1993) Heritage forest vegetative study. Center for Landscape Research, University of Toronto and Municipality of Metropolitan Toronto Transportation Department, Toronto. Internet document

    Google Scholar 

  • Chakraborty J (2009) Automobiles, air toxic and adverse health risks: environmental inequalities in Tampa Bay, Florida. Ann Assoc Am Geogr 99(4):674–697

    Article  Google Scholar 

  • Ciccioli P, Brancaleoni E, Frattoni M (1999) Reactive hydrocarbons in the atmosphere at urban and regional scales. In: Hewitt N (ed) Reactive hydrocarbons in the atmosphere. Academic, London, pp 159–207

    Chapter  Google Scholar 

  • Cilliers EJ (2015) A framework for planning green spaces in rural South Africa. Agric For Fish. Special Issue: Planning for Sustainable Communities: Green-Spaces in Rural Areas 4:80–86

    Google Scholar 

  • Conklin DJ, Bhatnagar A (2010) Aldehydes and cardiovascular diseases. Compr Toxicol 6:489–512

    Article  Google Scholar 

  • Conservation Institute (2014) 10 Fastest growing trees and plants in the world. April 25. http://www.conservationinstitute.org/10-fastest-growing-trees-plants-in-the-world/

  • Croitoru L (2007) Valuing the non-timber forest products in the Mediterranean region. Ecol Econ 63:768–775

    Article  Google Scholar 

  • Crutzen PJ (1979) The role of NO and NO2 in the chemistry of troposphere and the stratosphere. Annu Rev Earth Planet Sci 7:443–472

    Article  CAS  Google Scholar 

  • Dadhich RK, Meena RS, Reager ML, Kansotia BC (2015) Response of bio-regulators to yield and quality of Indian mustard (Brassica juncea L. Czernj. and Cosson) under different irrigation environments. J Appl Natl Sci 7(1):52–57

    Article  CAS  Google Scholar 

  • Datta R, Baraniya D, Wang YF, Kelkar A, Moulick A, Meena RS, Yadav GS, Ceccherini MT, Formanek P (2017) Multi-function role as nutrient and scavenger off free radical in soil. Sustain MDPI 9:402. https://doi.org/10.3390/su9081402

    Article  CAS  Google Scholar 

  • Derwent RG (1999) Reactive hydrocarbons and photochemical air pollution. In: Hewitt N (ed) Reactive hydrocarbons in the atmosphere. Academic, London, pp 267–291

    Chapter  Google Scholar 

  • Dewulf J, van Langenhove H (1999) Anthropogenic volatile organic compounds in ambient air and natural waters: a review on recent developments of analytical methodology, performance and interpretation of field measurements. J Chromatogr 843:163–177

    Article  CAS  Google Scholar 

  • Dhakal Y, Meena RS, Kumar S (2016) Effect of INM on nodulation, yield, quality and available nutrient status in soil after harvest of green gram. Legum Res 39(4):590–594

    Google Scholar 

  • Dixon RK (1995) Agroforestry system: sources of sinks of greenhouse gases. Agrofor Syst 31:99–116

    Article  Google Scholar 

  • Djanibekov N, Van Assche K, Bobojonov I, Lamers JP (2012) Farm restructuring and land consolidation in Uzbekistan: new farms with old barriers. Eur Asia Stud 64:1101–1126

    Article  Google Scholar 

  • Dobson AP, Bradshaw AD, Baker AJM (1997) Hopes for the future: restoration ecology and conservation biology. Springer Sci 277:515–522

    CAS  Google Scholar 

  • Dupe F, Thevathasanm NV, Zagal E, Gordon AM, Stolpe NB, Espinosa M (2011) Carbon sequestration potential of silvopastoral and other land use system in the Chilean Patagonia. In: Kumar BM, PKR N (eds) Carbon sequestration potential of agroforestry systems: opportunities and challenges, Advances in agroforestry 8. Springer, Dordrecht, pp 101–127

    Google Scholar 

  • Enhalt DH (1999) Gas phase chemistry in troposphere. In: Baumgartel H, Grunbein W, Hensel F (eds). Guest Ed. Zellner R. Global aspects of atmospheric chemistry. Steinkopff, Darmstadt, pp 21–107

    Google Scholar 

  • EPA (2010) Forest carbon sequestration cycle, US greenhouse gas emissions and sinks1990–2008.EPA 430-R-10-006. US EPA, Office of Atmospheric Programs, Washington, DC

    Google Scholar 

  • European Commission (2011) A roadmap for moving to a competitive low carbon economy in 2050. COM (2011)112 final

    Google Scholar 

  • Fall R (1999) Biogenic emissions of volatile organic compounds from higher plants. In: Hewitt N (ed) Reactive hydrocarbons in the atmosphere. Academic, London, pp 41–96

    Chapter  Google Scholar 

  • FAO (2005) Global Forest Resources Assessment 2005: progress toward sustainable forest management. FAO Forestry Pap. 147

    Google Scholar 

  • FAO (2006) Food and agriculture organization. Global food security. US. www. fao.org

    Google Scholar 

  • Feller C, Albrecht A, Blanchart E, Cabidoche YM, Chevallier T, Hartmann C, Eschenbrenner V, Larre-Larrouy MC, Ndandou JF (2001) Soil carbon sequestration in tropical areas: general considerations and analysis of some edaphic determinants for Lesser Antilles soil. Nutr Cycl Agroecosyst 61:19–31

    Article  Google Scholar 

  • Fernandes ECM, Nair PKR (1986) An evaluation of the structure and functions of tropical home gardens. Agric Syst 21:279–310

    Article  Google Scholar 

  • Feron VJ, Til HP, de Vrijer F (1991) Aldehydes: occurrence, carcinogenic potential, mechanism of action and risk assessment. Mutat Res 259:363–385

    Article  CAS  PubMed  Google Scholar 

  • Forster PV, Ramaswamy P, Artaxo T, Berntsen R, Betts DW, Fahey J, Haywood J, Lean (2007) Changes in atmospheric constituents and in Radioactive forcing. In: Solomon SD, Qin M, Manning Z, Chen M, Marquis KB, Averyt M, Tignor HL, Miller (eds) Climate change (2007) The physical science basis contribution of Working Group 1 to the fourth report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK/New York

    Google Scholar 

  • Friedrich R, Obemeier A (1999) Anthropogenic emissions of volatile organic compounds. In: Hewitt N (ed) Reactive hydrocarbons in the atmosphere. Academic, London, pp 1–39

    Google Scholar 

  • Gama-Rodngues EF, Gama-Rodngues AC, Nair PKR (2011) Soil carbon sequestration in cacao agroforestry system: a case study from Bahia, Brazil; In: Kumar BM, Nair PKR (eds) Carbon sequestration potential of agroforestry systems: opportunities and challenges, Advances in agroforestry 8. Springer, Dordrecht

    Google Scholar 

  • Godlee F, Walker A (1991) Importance of a healthy environment. British Med J 3003:1124–1126

    Article  Google Scholar 

  • Granby K, Carsten SC, Lohse C (1997) Urban and semi-urban observations of carboxylic acids and carbonyls. Atmos Environ 31:1403–1415

    Article  CAS  Google Scholar 

  • Green Synergy (2009) Reducing emission from deforestation and forest degradation in Madagascar. Inventory of current state. Unpublished report to the Madagascar REDD Technical Committee. Analysis contributed to Green Synergy by REBIOMA

    Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stock and land use change; a meta-analysis. Glob Chang Biol 8:345–360

    Article  Google Scholar 

  • Haile SG, Nair VD, Nair PKR (2010) Contribution of trees to carbon storage in soils of silvopastoral systems in Florida, USA. Glob Chang Biol 16(1):427–438

    Article  Google Scholar 

  • Hamilton K, Chokkalingam U, Bendana M (2010) State of the forest carbon markets: taking root and branching out. Ecosystem Market place, New York. www.ecosystemmarketplace.com

  • Heilig GK (1994) The greenhouse gas methane (CH4): sources and sinks, the impact of population growth, possible interventions. Popul Environ 16:109–137

    Article  Google Scholar 

  • Herzog F (1994) Multipurpose shade trees in coffee and plantations in Cote d’Ivoire. Agrofor Syst 27:259–268

    Article  Google Scholar 

  • Houghton RA, Unruh JD, Lefebre PA (1991) Current land use in the tropics and its potential for sequestering carbon. The Woods Hole Research Centre, Woods Hole, 25 pp

    Google Scholar 

  • International Labour Organization (ILO) (2014) Greening the rural economy and green jobs. ILO, Geneva

    Google Scholar 

  • IPCC (1990) The intergovernmental panel on climate change. The first assessment report. IPCC overview

    Google Scholar 

  • IPCC (2000) Land use, land-use change and forestry. A special report of the IPCC. Cambridge University Press, Cambridge, p 375

    Google Scholar 

  • IUCN (1998) Deforestation and forest degradation. IUCN forest programme. https://www.iucn.org

  • Jackson RB, Banner JL, Pockman WT, Walls DH (2002) Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418:623–626

    Article  CAS  PubMed  Google Scholar 

  • Jensen M (1993) Productivity and nutrient cycling of a Javanese home garden. Agrofor Syst 24:187–201

    Article  Google Scholar 

  • Jhariya MK (2014) Effect of forest fire on microbial biomass, storage and sequestration of carbon in a tropical deciduous forest of Chhattisgarh. Ph.D. thesis. I.G.K.V., Raipur (C.G.), pp 259

    Google Scholar 

  • Jhariya MK (2017) Vegetation ecology and carbon sequestration potential of shrubs in tropics of Chhattisgarh, India. Environ Monit Assess 189(10):518. https://doi.org/10.1007/s10661-017-6246-2

    Article  CAS  Google Scholar 

  • Jhariya MK, Yadav DK (2018) Biomass and carbon storage pattern in natural and plantation forest ecosystem of Chhattisgarh, India. J For Environ Sci 34(1):1–11. https://doi.org/10.7747/JFES.2018.34.1.1

    Article  Google Scholar 

  • Jhariya MK, Bargali SS, Raj A (2015) Possibilities and perspectives of agroforestry in Chhattisgarh. In: Zlatic M (ed) Precious forests-precious earth. InTech Open, Croatia, pp 237–257. https://doi.org/10.5772/60841. isbn:978-953-51-2175-6

    Google Scholar 

  • Jhariya MK, Banerjee A, Yadav DK, Raj A (2018a) Leguminous trees an innovative tool for soil sustainability. In: Meena RS, Das A, Yadav GS, Lal R (eds) Legumes for soil health and sustainable management. Springer, pp 315–345. isbn:978-981-13-0253-4

    Google Scholar 

  • Jhariya MK, Yadav DK, Banerjee A (2018b) Plant mediated transformation and habitat restoration: phytoremediation an eco-friendly approach. In: Gautam A, Pathak C (eds) Metallic contamination and its Toxicity. Daya Publishing House, A Division of Astral International Pvt. Ltd, New Delhi, pp 231–247. isbn:9789351248880

    Google Scholar 

  • Kan E, Lamers JPA, Eshchanov R, Khamzina A (2008) Small-scale farmers’ perceptions and knowledge of tree intercropping systems in the Khorezm region of Uzbekistan. For Trees Liveli 18:355–372

    Article  Google Scholar 

  • Kang BT (1993) Alley cropping: past achievements and future directions. Agrofor Syst 23:141–155

    Article  Google Scholar 

  • Kang BT, Caveness FE, Tian G, Kolawole GO (1999) Long-term alley cropping with four species on an Alfisol, in southwest Nigeria – effect on crop performance, soil chemical properties and nematode population. Nutr Cycl Agroecosyst 54:145–155

    Article  Google Scholar 

  • Katzenstein AS, Doezema LA, Simpson IJ, Blake DR, Rowland S (2003) Extensive regional atmospheric hydrocarbon pollution in the Southwestern United States. PUAS 100:11975–11979

    Article  CAS  Google Scholar 

  • Khamzina A, Lamers JPA, Vlek PLG (2012) Conversion of degraded cropland to tree plantations for ecosystem and livelihood benefits. In: Martius C, Rudenko I, Lamers JPA, Vlek PLG (eds) Cotton, water, salts and soums – economic and ecological restructuring in Khorezm, Uzbekistan. Springer, Dordrecht/Heidelberg/London

    Google Scholar 

  • Kirschke S (2013) Three decades of global methane sources and sinks. Nat Geosci 6:813–823

    Article  CAS  Google Scholar 

  • Kittur B, Swamy SL, Bargali SS, Jhariya MK (2014a) Wildland fires and moist deciduous forests of Chhattisgarh, India: divergent component assessment. J For Res 25(4):857–866. https://doi.org/10.1007/s11676-014-0471-0

    Article  CAS  Google Scholar 

  • Kittur B, Jhariya MK, Lal C (2014b) Is the forest fire can affect the regeneration and species diversity. Ecol Environ Conserv 20(3):989–994

    Google Scholar 

  • Kort EA, Eluszkiewica J, Stephens BB, Miller JB, Gerbig C, Nehrkom T, Daube BC, Kaplan JO, Houweling S, Wofsy S (2008) Emissions of CH4 and N2O over the United States and Canada based on a receptor-oriented modeling framework and COBRA-NA atmospheric observations. Geophys Res Lett 35:L18808

    Article  CAS  Google Scholar 

  • Koskela L (2000) An exploration towards a production theory and its application to construction. VTT Publications, Espoo. www.inf.vtt.fi/pdf/publications/2000/P408.pdf

    Google Scholar 

  • Krna MA, Rapson GL (2013) Clarifying, carbon sequestration. Carbon Manage 4:309–322

    Article  CAS  Google Scholar 

  • Kuchelmeister G (1991) Urban and peri-Urban multipurpose forestry in development cooperation experience, deficits and recommendations. Commission on the European Communities, Ilertissen

    Google Scholar 

  • Kuchelmeister G (1993) Trees, settlements and people in developing countries. Arboric J Int J Urban For 174:399–411

    Article  Google Scholar 

  • Kumar BM, Nair PKR (2011) Carbon sequestration potential of agroforestry system opportunities and challenges. Springer Nature, pp 123–130

    Google Scholar 

  • Kumar BM, George SJ, Suresh TK (2001) Fodder grass productivity in Kerala, India. Agrofor Syst 52:91–106

    Article  Google Scholar 

  • Kumar S, Meena RS, Pandey A, Seema (2017) Soil acidity management and an economics response of lime and sulfur on sesame in an alley cropping system. Int J Curr Microbiol App Sci 6(3):2566–2573

    Article  CAS  Google Scholar 

  • Laganiere J, Angers D, Pare D (2010) Carbon accumulation in agricultural soils after afforestation; a meta-analysis. Glob Chang Biol 16:439–453

    Article  Google Scholar 

  • Lal R (1998) Soil erosion impact on agronomic productivity and environment quality. Crit Rev Plant Sci 17:319–464

    Article  Google Scholar 

  • Lal R (2005) Soil carbon sequestration in natural and managed tropical forest ecosystem. J Sustain 21:1–30

    Article  Google Scholar 

  • Lal R (2010) Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. Bioscience 60:708–721

    Article  Google Scholar 

  • Lampietti JA, Subramanian U (1995) Taking stock of national environmental strategies. Environmental management series, paper no. 010. Enviornmrnt Department. The World Bank, Washington, DC

    Google Scholar 

  • Lasco RD, Suson PD (1999) A Leucaena leucocephala-based indigenous fallow system in central Philippines: the National system. Int Tree Crop J 10:161–174

    Article  Google Scholar 

  • Leakey RRB (1996) Definition of agroforestry. Agrofor Today 8:5–7

    Google Scholar 

  • Lee JJ, Dodson R (1996) Potential carbon sequestration by afforestation of pasture in the South-Central United States. Agron J 88(3):381–384

    Article  Google Scholar 

  • Lee KH, Jose S (2003) Soil respiration and microbial biomass in a pecan-cotton alley cropping system in southern USA. Agrofor Syst 58(1):45–54

    Article  Google Scholar 

  • Li D, Wiu S, Luo Y (2012) Global pattern of the dynamics of soil carbon and nitrogen stock following afforestation: a meta-analysis. New Phytol 195:172–181

    Article  CAS  PubMed  Google Scholar 

  • Liang EY, Hoffman P, Jurgen S (2017) Health impacts of smog pollution: the human dimension of exposure. Lancet 1:132–140

    Google Scholar 

  • Lioubimtseva E, Cole R, Adams JM, Kapustin G (2005) Impacts of climate and land-cover changes in arid lands of Central Asia. J Arid Environ 62:285–308

    Article  Google Scholar 

  • Lipari F, Dalch JM, Scruggs WF (1984) Aldehyde emission from wood-burning fire places. Environ Sci Technol 18:326–330

    Article  CAS  PubMed  Google Scholar 

  • Lorenz K, Lal R (2014) Soil organic carbon sequestration in agroforestry system- a review. Agronomy Sust Dev 34:443–454

    Article  CAS  Google Scholar 

  • Macdicken KG, Vergara NT (1990) Agroforestry: classification. Wiley, New York

    Google Scholar 

  • Mackey B, Prentice IC, Steffen W, House JI, Lindenmayer D, Keith H, Berry S (2013) Untangling the confusion around land carbon science and climate change mitigation policy. Nat Clim Chang 3:552–557

    Article  CAS  Google Scholar 

  • Mann R (2016) Jatropha-based alley cropping system’s contribution to carbon sequestration. Int J Agron Agric Res 8:1–9

    Google Scholar 

  • Matos ES, Freese D, Mandonca ES, Slazaka A, Huttl RE (2011) Carbon nitrogen and organic carbon fraction in top soil affected by conversion from silvopastoral to different land use system. Agrofor Syst 81:203–211

    Article  Google Scholar 

  • Medugu NI, Majid MR, Johar F, Choji ID (2010) The role of afforestation programme in combating desertification in Nigeria. Int J Clim Change Strategies Manage 2:35–47

    Article  Google Scholar 

  • Meena RS, Yadav RS (2014) Phonological performance of groundnut varieties under sowing environments in hyper arid zone of Rajasthan, India. J Appl Natl Sci 6(2):344–348

    Article  CAS  Google Scholar 

  • Meena H, Meena RS, Singh B, Kumar S (2016) Response of bio-regulators to morphology and yield of clusterbean [Cyamopsis tetragonoloba (L.) Taub.] under different sowing environments. J Appl Natl Sci 8(2):715–718

    Article  CAS  Google Scholar 

  • Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Shiiag SK (2016a) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112:1258–1260

    Article  Google Scholar 

  • Meszaros E (1999) Fundamentals of atmospheric aerosol chemistry. Akademiai Kiado, Budapest, 308 pp

    Google Scholar 

  • Miller RW (1988) Urban forestry: planning and managing urban greenspaces. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Miller RW (1993) Greenbelt silviculture. In: Kollin C (ed) Proceedings of the sixth national urban forest conference. American Forests, Minnesota

    Google Scholar 

  • Montagnini F, Nair PKR (2004) Carbon sequestration: an underexploited environmental benefit of agroforestry systems. Agrofor Syst 61:281–295

    Google Scholar 

  • Montzka SA, Dlugokencky EJ, Butler JH (2001) Non-CO2 greenhouse gases and climate change. Nature 476:43–50

    Article  CAS  Google Scholar 

  • Mosquera-Losada MR, McAdam J, Romero-Franco R, Santiago-Freijanes JJ, Riguero-Rodríquez A (2009) Definitions and components of agroforestry practices in Europe. In: Rigueiro-Rodríguez A, McAdam J, Mosquera-Losado M (eds) Agroforestry in Europe: current status and future prospects. Springer, Dordrecht, p 319

    Google Scholar 

  • Murray B, Lubowski R, Sohngen B (2009) Including international forest carbon incentives in climate policy: understanding the economics. Nicholas Institute for Environmental Policy Solutions, Duke University, Durham

    Google Scholar 

  • Murthy IK, Gupta M, Tomar S, Munsim Tiwari R (2013) Carbon sequestration potential of agroforestry system in India. J Earth Sci Clim Chang 4:131–141

    Article  CAS  Google Scholar 

  • Muschler RG (2016) Agroforestry: essential for sustainable and climate-smart land use. In: Pancel L, Kohl M (eds) Tropical forestry handbook. Springer, Berlin, pp 2013–2116. https://doi.org/10.1007/978-3-642-54601-3-300

  • Mutuo PK (2003) Potential of improved tropical legume fallows and zero tillage practice for soil organic carbon sequestration. Ph.D. thesis, University of London

    Google Scholar 

  • Mutuo PK, Codisch G, Albrecht A, Palm CA, Verchot L (2005) Potential of agroforestry for carbon sequestration and mitigation of greenhouse gas emission from soils in the tropics. Nutr Cycl Agroecosyst 71:43–54

    Article  CAS  Google Scholar 

  • Myhre GD, Shindell FM, Bréon W, Collins J, Fuglestvedt J, Huang D, Koch JF, Lamarque D, Lee B, Mendoza T, Nakajima A, Robock G, Stephens T, Takemura A, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Climate change (2013) The physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change

    Google Scholar 

  • Nair PKR (1993) An introduction to agroforestry. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Nair PRK (2011) Methodological challenges in estimating carbon sequestration potential of agroforestry system. In: Kumar BM, PKR N (eds) Carbon sequestration potential of agroforestry system: opportunities and challenges. Springer, Dordrecht, pp 3–16

    Chapter  Google Scholar 

  • Nair PKR, Nair VD (2003) Carbon storage in North American agroforestry systems. In: Kimble J, Heath LS, Birdsey RA, Lal R (eds) The potential of U.S. forest soils to sequester carbon and mitigate the greenhouse effect. CRC Press, Boca Raton, pp 333–346

    Google Scholar 

  • Nair PKR, Kumar BM, Nair VD (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172:10–23

    Article  CAS  Google Scholar 

  • Niu X, Duiker SW (2006) Carbon sequestration potential by afforestation of marginal agricultural land in the Midwestern U.S. For Ecol Manag 223:415–427

    Article  Google Scholar 

  • O’Brien PJ, Diraki A, Shangari N (2005) Aldehyde sources, metabolism, molecular toxicity, mechanisms, and possible effects on human health. Crit Rev Toxicol 35:609–662

    Article  CAS  PubMed  Google Scholar 

  • Olarinde T, Orecho SM (2015) Evolution of environmental policies in Uganda and Nigeria: a developing country perspective. TECHNICO LISB 09:1–14

    Google Scholar 

  • Ong BL (2003) Green plot ratio: an ecological measure for architecture and urban planning. Landsc Urban Plan 62(4):197–211. https://doi.org/10.1016/S0169-2046(02)00191-3

    Article  Google Scholar 

  • Painkra GP, Bhagat PK, Jhariya MK, Yadav DK (2016) Beekeeping for poverty alleviation and livelihood security in Chhattisgarh, India. In: Narain S, Rawat SK (eds) Innovative technology for sustainable agriculture development. Biotech Books, New Delhi, pp 429–453. ISBN:978-81-7622-375-1

    Google Scholar 

  • Paustain K, Six J, Elliot ET, Hunt HN (2000) Management options for reducing CO2 emission from agricultural soils. Biogeochem 48:147–163

    Article  Google Scholar 

  • Paustian K, Andrén O, Janzen HH, Lal R, Smith P, Tian G, Tiessen H, van Noordwijk M, Woomer PL (1997) Agricultural soils as a sink to mitigate CO2 emissions. Soil Use Manag 13:1–15

    Article  Google Scholar 

  • Pearce D (2003) The social cost of carbon and its policy implications. Oxf Rev Econ Policy 19:362–384

    Article  Google Scholar 

  • Peich M, Thevathasan NY, Gordon AM, Huss J, Abohassan RA (2006) Carbon sequestration potentials in temperate tree-based intercropping system southern Ontario, Canada. Agrofor Syst 66:243–257

    Article  Google Scholar 

  • Peters GP, Andrew RM, Boden T, Canadel JG, Ciais P, Le Quere C, Marland G, Raupauch MR, Wilson C (2013) The challenge to keep global warming below 2°C. Nat Clim Chang 3:4–6

    Article  Google Scholar 

  • Pierrehumbert RT (2004) High levels of atmospheric carbondioxide necessary for the termination of global glaciations. Nature 429:646

    Article  CAS  PubMed  Google Scholar 

  • Possanzini M, Palov D, Cecinato A (2002) Sources and photodecomposition of formaldehyde and Actetaldehyde in Rome ambient air. Atmos Environ 36:3195–3201

    Article  CAS  Google Scholar 

  • Prinz D (1986) Increasing the productivity of smallholder farming system by introduction of planted fallow plants. Res Develop 23:31–56

    Google Scholar 

  • Raj A, Jhariya MK, Bargali SS (2017) Climate smart agriculture and carbon sequestration. In: Pandey CB, Gaur MK, Goyal RK (eds) Climate change and agroforestry. New India Publishing Agency, New Delhi, pp 1–19. isbn:9789-386546067

    Google Scholar 

  • Raj A, Jhariya MK, Harne SS (2018) Threats to biodiversity and conservation strategies, pp 304–320. In: Sood KK, Mahajan V (eds) Forests, climate change and biodiversity. Kalyani Publisher, NewDelhi, India, pp 381

    Google Scholar 

  • Ram K, Meena RS (2014) Evaluation of pearl millet and mungbean intercropping systems in Arid Region of Rajasthan (India). Bangladesh J Bot 43(3):367–370

    Article  Google Scholar 

  • Rao MR, Nair PKK, Ong CK (1998) Biophysical interactions in tropical agroforestry system. Agrofor Syst 38:3–10

    Article  Google Scholar 

  • Romero F, Chana C, Montenegro J, Sanchez LA, Guevara G (1991) Productividad de Gliricidia sepium, Erythrina berteroana en cercas vivas manejadas bajo tres frecuencias de poda en la zona atlantica de Costa Rica. Agroforestria, No 6, Turrialba, Costa Rica, 4pp

    Google Scholar 

  • Roshetko JM, Delancy M, Hairiah K, Purnomosdhi P (2002) Carbon stocks in Indonesian Home garden system; Can smallholder systems be targeted for increased carbon storage. Am J Altern Agric 17:138–148

    Article  Google Scholar 

  • Ruark GA, Schoeneberger MM, Nair PKR (2003) Agroforestry–helping to achieve sustainable forest management. UNFF (United Nations Forum for Forests) Intercessional

    Google Scholar 

  • Ruddiman W (2003) The anthropogenic greenhouse era began thousands of years ago. Climate Change 61:261–293

    Article  CAS  Google Scholar 

  • Salafsky N (1994) Forest gardens in the Gunung Palung region of West Kalimantan, Indonesia: defining a locally-developed, market-oriented agroforestry system. Agrofor Syst 28:237–247

    Article  Google Scholar 

  • SAPM (2010) Protected areas of Madagascar digital GIS shapefiles. Systeme d’Aires Protegees de Madagascar, Antananairvo, Madagascar

    Google Scholar 

  • Schauer JJ, Kleeman MS, Cass GR, Simonei BRT (2001) Measurement of emission from air pollution sources. 3.C-IC-29 organic compounds from fire place combustion of wood. Environ Sci Technol 35:1716–1728

    Article  CAS  PubMed  Google Scholar 

  • Sedjo R, Sohngen B (2012) Carbon sequestration in forest soils. Ann Rev Resour Econ 4:127–144

    Article  Google Scholar 

  • Sharrow SH, Ismail S (2004) Carbon and nitrogen storage in agroforestry tree plantation and pastures in western Oregon USA. Agrofor Syst 60:123–130

    Article  Google Scholar 

  • Singh NR, Jhariya MK (2016) Agroforestry and agrihorticulture for higher income and resource conservation. In: Narain S, Rawat SK (eds) Innovative technology for sustainable agriculture development. Biotech Books, New Delhi, pp 125–145. ISBN:978-81-7622-375-1

    Google Scholar 

  • Sohngen B (2009) An analysis of forestry carbon sequestration as a response to climate change. Copenhagen consensus on climate. Copenhagen Consensus Center, Denmark

    Google Scholar 

  • Stern DI (2006) Reversal of the trend in global anthropogenic sulfur emissions. Glob Environ Chang 16:207–220

    Article  Google Scholar 

  • Stringer LC, Dougill AJ (2013) Channeling science into policy: enabling best practices from research on land degradation and sustainable land management in dry land Africa. J Environ Manag 114:328–335. https://doi.org/10.1016/j.jenvman.2012.10.025

    Article  Google Scholar 

  • Szott LT, Fernandes ECM, Sanchez PA (1991) Soil–plant interactions in agroforestry systems. In: Jarvis PG (ed) Agroforestry: principles and practices. Elsevier, Amsterdam

    Google Scholar 

  • Tian H, Lu C, Chen G, Tao BO, Pan S, Delgrosso SJ, Xu X, Bruhwile L, Wofsy SC, Kor EA, Prior SA (2012) Contemporary and projected biogenic fluxes of methane and nitrous oxide in North American terrestrial ecosystems. Front Ecol Environ 10:528–538

    Article  Google Scholar 

  • Turner BL, Lambin EF, Reenberg A (2007) The emergence of land change science for global environmental change and sustainability. Proc Natl Acad Sci 104:20666–20671

    Article  CAS  PubMed  Google Scholar 

  • Udawatta RP, Jose S (2011) Carbon sequestration potential of agroforestry practices in template North America. In: Kumar BM, PKR N (eds) Carbon sequestration potential of agroforestry system: opportunities and challenges. Springer, Dordrecht, pp 17–42

    Chapter  Google Scholar 

  • Udawatta RP, Kremer RJ, Adamson BW, Anderson SH (2008) Variations in soil aggregate stability and enzyme activities in a temperate agroforestry practice. Appl Soil Ecol 39:153–160

    Article  Google Scholar 

  • UNEP (2007) Global Environmental Outlook. GEO(4)Environment for Development, Valletta, Malta

    Google Scholar 

  • UNEP (2009) The environmental food crisis: the environment’s role in averting future food crises: a UNEP rapid response assessment. United Nations Publications

    Google Scholar 

  • UNEP (2011) Towards a green economy: pathways to sustainable development and poverty eradication – a synthesis for policy makers. UNEP, p 44

    Google Scholar 

  • UNFCC (2007) Report of the conference of parties on the thirteenth session. Bali Indonesia, United Nations Framework convention on Climate Change, Geneva

    Google Scholar 

  • UNFCCC (2015) United Nations climate change conference, Paris, France. 30th November–12th December 2015

    Google Scholar 

  • US DOE (2008) Carbon cycling and bio-sequestration; integrating biology and climate through system science, report from the March 2008 Workshop. DOE/SC- 108.US Department of Energy, office of Science. http://genomicsgtl.gov/carboncycle

  • Van der Werf GR, Morton DC, Defries RS, Giglio L, Randerson JT, Collatz GJ, Kasibhatla PS (2009) Estimates of fire emissions from an active deforestation region in the Southren Amazon based on satellite data and biogeochemical modeling. Bioscience 6:235–249

    Google Scholar 

  • Varma D, Meena RS, Kumar S (2017) Response of mungbean to fertility and lime levels under soil acidity in an alley cropping system in Vindhyan Region, India. Int J Chem Stud 5(2):384–389

    Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Meena RS (2015) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    Article  Google Scholar 

  • Villanueva F, Tapia A, Colmenar I, Abaladejo J, Cabañas B, Martinez E (2015) Aldehyde measurements in indoor and outdoor environment in central-southern Spain. In: Nejadkoorki F (ed) Environmental issues current air quality issues. Intech Open publishers, England. www.intechopen.com. https://doi.org/10.5772/60016

    Google Scholar 

  • Watson RT, Noble IR, Bolin B, Ravindranathan NR, Verardo DJ, Dokken JD (2000) IPCC special report on land use, land-use change and forestry. http://wwwrida.no/climate/ipcc/land_use

  • Wilkinson KM, Elevitch CR (2000) Multipurpose windbreak design and species for Pacific Island. Agroforestry Guide for Hawaii USA. http://www.groforestry.net

  • Wuebbles DJ, Hayhoe K (2002) Atmospheric methane and global change. Earth Sci Rev 57:177–210

    Article  CAS  Google Scholar 

  • Yadav GS, Lal R, Meena RS, Datta M, Babu S, Das A, Layek J, Saha P (2017) Energy budgeting for designing sustainable and environmentally clean/safer cropping systems for rainfed rice fallow lands in India. J Clean Prod 158:29–37

    Article  Google Scholar 

  • Young A (1997) Agroforestry for soil management, 2nd edn. CAB International, Wallingford, 320p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akanwa, A.O., Mba, H.C., Jiburum, U., Ogboi, K.C. (2019). Strategies for Combating Climate Change. In: Jhariya, M., Banerjee, A., Meena, R., Yadav, D. (eds) Sustainable Agriculture, Forest and Environmental Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-6830-1_12

Download citation

Publish with us

Policies and ethics