Skip to main content

Short-Rotation Forestry: Implications for Carbon Sequestration in Mitigating Climate Change

  • Chapter
  • First Online:
Sustainable Agriculture, Forest and Environmental Management

Abstract

The unceasing loss of natural forest ecosystems and pressure on limited biomass production for fuel and timber has led to a search for a new platform. During the past few decades, plantation forestry has expanded around the world to meet the demands of biomass production, especially for energy consumption, with the aim to replace fossil fuels. In this context, short-rotation forestry (SRF; or fast-growing tree plantations) has played a major role due to its rapid growth. The potential of forest ecosystems to mitigate climate change has been the focus of many international organizations. However, to adapt and mitigate climate change, the potentialities of SRF need to be addressed: the majority of SRF is used for energy production, thereby releasing carbon dioxide (CO2) to the atmosphere; thus, the conversion into durable products is urgently required. The carbon sequestration (Cseq) potential of different short-rotation plantations around the world has been assessed by different researchers to be 1.3–8.0 Mg C/ha/year. Similarly, studies have observed that carbon content in the soil tends to change with the establishment of SRF; most of the studies showed a declining trend of soil organic carbon, with a maximum of 20% in the initial years and followed by improvement of soil carbon up to 57%. However, the impacts of SRF on soil sustainability and biodiversity are another limitation on the acceptability of SRF in terms of its long-term sustainability. The proper management and implementation of policy incentives to maximize the importance of carbon credits could increase the sustainability of SRF and be considered as a future approach to mitigate climate change. Other afforestation and reforestation activities on wasteland, unproductive arable land, and agroforestry could also widen the scope of SRF to curb such climate change issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C:

Carbon

CDM:

Clean development mechanism

CO2 :

Carbon dioxide

Cseq :

Carbon sequestration

GHG:

Greenhouse gas

MAI:

Mean annual increment

SOC:

Soil organic carbon

SRF:

Short-rotation forestry

SRP:

Short-rotation plantation

References

  • Abate A (2004) Biomass and nutrient studies of selected tree species of natural and plantations forests: implications for a sustainable management of the Munessa-Shashemene Forest, Ethiopia. Dissertation, School of Biology, Chemistry and Earth Sciences, Bayreuth, Germany

    Google Scholar 

  • Agus C, Oka Karyanto O, Hardiwinoto S, Mnaiem M, Kita S, Haibara K, Toda H (2001) Biomass productivity and carbon stock in short rotation plantation of Gmelina arborea Roxb. in tropical forest. Indones J Agric Sci 1:11–16

    Google Scholar 

  • Amundson R (2001) The carbon budget in soils. Annu Rev Earth Planet Sci 29:535–562

    Article  CAS  Google Scholar 

  • Aronsson P, Perttu K (2001) Willow vegetation filters for wastewater treatment and soil remediation combined with biomass production. For Chronicle 77(2):293–299

    Google Scholar 

  • Ashoka P, Meena RS, Kumar S, Yadav GS, Layek J (2017) Green nanotechnology is a key for eco-friendly agriculture. J Clean Prod 142:4440–4441

    Article  Google Scholar 

  • Basavaraj G, Rao PP, Reddy CR, Kumar AA, Rao PS, Reddy BVS (2012) A review of the national biofuel policy in India: a critique of the need to promote alternative feedstocks. Working Paper Series no. 34, RP-Markets, Institutions and Policies, International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, Andhra Pradesh, India

    Google Scholar 

  • Baum C, Leinweber P, Weih M, Lamersdorf N, Dimitriou I (2009) Effects of short rotation coppice with willows and poplar on soil ecology. Landbauforschung-vTI. Agric For Res 59:183–196

    Google Scholar 

  • Bene CD, Pellegrino E, Tozzini C, Bonari E (2011) Changes in soil quality following poplar short-rotation forestry under different cutting cycles. Ital J Agron 6:28–35

    Article  Google Scholar 

  • Benwood (2011) Short rotation forestry and agroforestry in CDM countries and Europe. In: Kaufmann F, Lamond G, Lange M, Schaub J, Siebert C, Sprenger T (eds) The BENWOOD consortium

    Google Scholar 

  • Bertolucci FLG, Demuner BJ, Garcia SLR, Ikemori YK (1995) Increasing fiber yield and quality at Aracruz. In: Potts BM, Borralho NMG, Reid JB, Cromer RN, Tibbitts WN, Raymond CA (eds), Eucalypt plantations: improving fibre yield and quality. Proceedings of the Cooperative Centre for Temperate Hardwood Forestry, International Union of Forestry Research Organizations Conference. The Cooperative Centre for Temperate Hardwood Forestry, Hobart, Tasmania, Australia

    Google Scholar 

  • Bolin B, Sukumar R (2000) Global perspective. In: Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (eds) Land use, land-use change, and forestry, A special report of the IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  • Braun AC, Troeger D, Garcia R, Aguayoc M, Barra R, Vogt J (2017) Assessing the impact of plantation forestry on plant biodiversity – a comparison of sites in Central Chile and Chilean Patagonia. Glob Ecol Conserv 10:159–172

    Article  Google Scholar 

  • Bremer LL, Farley KA (2010) Does plantation forestry restore biodiversity or create green deserts? A synthesis of the effects of land-use transitions on plant species richness. Biodivers Conserv 19:3893–3915

    Article  Google Scholar 

  • British Forestry Commission (2007) Biomass action plan for Scotland. Scottish Executive, Edinburgh

    Google Scholar 

  • Cairns MA, Meganck RA (1994) Carbon sequestration, biological diversity, and sustainable development: integrated forest management. Environ Manag 18(1):13–22

    Article  Google Scholar 

  • Calfapietra C, Barbati A, Perugini L, Ferrari B, Guidolotti G, Quatrini A, Corona P (2015) Carbon mitigation potential of different forest ecosystems under climate change and various managements in Italy. Ecosyst Health Sustain 1(8):1–9

    Article  Google Scholar 

  • Cannell MGR (1995) Forests and the global carbon cycle in the past, present and future. European Forest Institute, Research report 2. Joensuu, Finland, 66 p

    Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67

    Article  CAS  PubMed  Google Scholar 

  • Carnus JM, Parrotta J, Brockerhoff E, Arbez M, Jactel H, Kremer A, Lamb D, O’Hara K, Walters B (2006) Planted forests and biodiversity. J For 104(2):65–77

    Google Scholar 

  • Chahal D, Ahmad A, Bhatia JN (2012) Assessment of agroforestry based two tier cropping system in Ambala district of Haryana. Agric Updat 7(3/4):210–213

    Google Scholar 

  • Chapin FS, Torn MS, Tateno M (1996) Principles of ecosystem sustainability. Am Nat 148(6):1016–1037

    Article  Google Scholar 

  • Chaturvedi AN (1998) Plantations as a source of industrial raw material for wood-based Industry. In: Damodaran K, Aswathanarayana BS, Prasad TRN, Hyamasundar K, Padmanabhan S (eds) Proceedings of national seminar on processing and utilization of plantation timber and bamboo, Bangalore, India, 23–24 July 1998. Bangalore, Indian Plywood Industries Research and Training Institute, pp 13–19

    Google Scholar 

  • Chaturvedi AN, Sharma SC, Srivastava R (1988) Water consumption and biomass production of some forest tree species. Int Tree Crops J 5:71–76

    Article  Google Scholar 

  • Chaudhary NP, Chaudhary G (2012) Poplar culture on farmland: farmer’s experience from Uttar Pradesh. For Bull 12(1):68–74

    Google Scholar 

  • Chauhan SK, Sharma R, Singh B, Sharma SC (2015) Biomass production, carbon sequestration and economics of on farm poplar plantations in Punjab, India. J Appl Nat Sci 7(1):452–458

    Article  Google Scholar 

  • Chauhan SK, Sharma R, Panwar P, Chander J (2017a) Short rotation forestry: a path for economic and environmental prosperity. In: Parthiban KT, Seenivasan R (eds) Forestry technologies – a complete value change approach. Scientific Publishers, New Delhi, pp 256–284

    Google Scholar 

  • Chauhan SK, Sharma R, Chander J (2017b) Short rotation forestry: it’s application for biomass, energy, soil health and carbon sequestration. In: Parthiban KT, Sudhagar RJ, Cinthia Fernandaz CC, Suresh KK (eds) Agroforestry strategies for climate change: mitigation and adaptation. Jaya Publishing House, Delhi, pp 139–168

    Chapter  Google Scholar 

  • Chen CR, Xu ZH, Mathers NJ (2004) Soil carbon pools in adjacent national and plantation forests of subtropical Australia. Soil Sci Soc Am J 68:282–291

    Article  CAS  Google Scholar 

  • Chen Y, Liu Z, Rao X, Wang X, Liang C, Lin Y, Zhou L, Cai X, Fu S (2015) Carbon storage and allocation pattern in plant biomass among different forest plantation stands in Guangdong, China. Forests 6:794–808. https://doi.org/10.3390/f6030794

    Article  Google Scholar 

  • Chirino I, Condron L, McLenaghen R, Davis M (2010) Effects of plantation forest species on soil properties. In: 19th World congress of soil science, soil solutions for a changing world, 1–6 August 2010, Brisbane, Australia

    Google Scholar 

  • Christersson L (2005) Plant physiological aspects of woody biomass production for energy purposes. In: Verma KS, Khurana DK, Christersson L (eds) Short rotation forestry for industrial and rural development. Indian Society of Tree Scientists, Nauni, Solan

    Google Scholar 

  • Christersson L, Verma K (2006) Short-rotation forestry – a complement to “conventional” forestry. Unasylva 57(223):34–39

    Google Scholar 

  • Coleman MD, Isebrands JG, Tolsted DN, Tolbert VR (2004) Comparing soil carbon of short rotation poplar plantations with agricultural crops and woodlots in North Central United States. Environ Manag 33(S1):S299–S308

    Article  Google Scholar 

  • Cossalter C, Pye-Smith C (2003) Fast-wood forestry: myths and realities. Center for International Forestry Research, Bogor

    Google Scholar 

  • Country Report on Poplars and Willows (2016) Period (2012–2015) National Poplar Commission of India. http://www.fao.org/forestry/44756-09ec50609435431af805e892765a686e3.pdf. Retrieved on 17 April 2018

  • Cunningham SC, Mac Nally R, Baker PJ, Cavagnaro TR, Beringer J, Thomson JR, Thompson RM (2015) Balancing the environmental benefits of reforestation in agricultural regions. Perspect Plant Ecol Evol Syst 17:301–317

    Article  Google Scholar 

  • Dadhich RK, Meena RS, Reager ML, Kansotia BC (2015) Response of bio-regulators to yield and quality of Indian mustard (Brassica juncea L. Czernj. and Cosson) under different irrigation environments. J App Nat Sci 7(1):52–57

    Article  CAS  Google Scholar 

  • Davis AA, Trettin CC (2006) Sycamore and sweetgum plantation productivity on former agricultural land in South Carolina. Biomass Bioenergy 30:769–777

    Article  Google Scholar 

  • Deckmyn G, Muys BJ, Quijano JG, Ceulemans R (2004) Carbon sequestration following afforestation of agricultural soils: comparing oak/beech forest to short-rotation poplar coppice combining a process and a carbon accounting model. Glob Chang Biol 10:1482–1491

    Article  Google Scholar 

  • Degryze S, Six J, Paustian K, Morris SJ, Paul EA, Merckx R (2004) Soil organic carbon pool changes following land-use conversions. Glob Chang Biol 10:1120–1132

    Article  Google Scholar 

  • Diaz C, Tandug L (1999) Development and management of shortrotation forestry in the Philippines. In: Proceedings of a joint meeting at the University of the Philippines, Los Baños College, Laguna, the Philippines, 3–7 March 1999

    Google Scholar 

  • Dickmann D, Isebrands J, Eckenwalder J, Richardson J (2001) Poplar culture in North America. National Research Council of Canada Press, Ottawa

    Google Scholar 

  • Dowell RC, Gibbins D, Rhoads RL, Pallardy SG (2009) Biomass production physiology and soil carbon dynamics in short-rotation-grown Populus deltoides and P. deltoides × P. nigra hybrids. For Ecol Manag 257:134–142

    Article  Google Scholar 

  • Dwivedi AP (1993) A text book of Silviculture. International Book Distribution, Dehradun, p 235

    Google Scholar 

  • Dyson FJ (1977) Can we control the carbon dioxide in the air? Energy 2:287–291

    Article  Google Scholar 

  • Eduardo A, Jorge C, Rafael R, Carolina P (2017) Bio-ethanol potential from high density short rotation woody crops on marginal lands in central Chile. Cerne 23(1):133–145. https://doi.org/10.1590/01047760201723012278

    Article  Google Scholar 

  • El Bassam N (1998) Energy plant species: their use and impact on environment and development. James and James Science Publishers, London, 334 p

    Google Scholar 

  • Elmqvist T, Folke C, Nyström M, Peterson G, Bengtsson J, Walker B, Norberg J (2003) Response diversity, ecosystem change, and resilience. Front Ecol Environ 1:488–494

    Article  Google Scholar 

  • Enters T (2004) The role of incentives in forest plantation development in the Asia-Pacific region. In: Enters T, Durst PB (eds) What does it take? The role of incentives in forest plantation development in the Asia-Pacific region. RAP Publication 2004/27, Food and Agriculture Organization of the United Nations regional office for Asia and the Pacific Bangkok, pp 1–6

    Google Scholar 

  • Enters T, Brown CL, Durst PB (2004) What does it take? Incentives and their impact on plantation development. In: Enters T, Durst PB (eds) What does it take? The role of incentives in forest plantation development in the Asia-Pacific region. RAP Publication 2004/27, Food and Agriculture Organization of the United Nations regional office for Asia and the Pacific Bangkok, pp 263–278

    Google Scholar 

  • Fang S, Xue J, Tang L (2007) Biomass production and carbon sequestration potential in poplar plantations with different management patterns. J Environ Manag 85:672–679

    Article  CAS  Google Scholar 

  • FAO (2001) Mean annual volume increment of selected industrial forest plantation species by L Ugalde and O Pérez. Forest Plantation Thematic Papers, Working Paper 1, Forest Resources Development Service, Forest Resources Division. FAO, Rome

    Google Scholar 

  • FAO (2006) Global forest resources assessment 2005. Progress towards sustainable forest management. Forestry Paper 147. UN Food and Agriculture Organization, Rome

    Google Scholar 

  • FAO (2016) Global forest products facts and figures. 18p

    Google Scholar 

  • Fenton R, Romero JL (1995) An overview of fast growing plantations. In: Zobel BJ, Ikemori YK, Penchel RM, Bertolucci FLG (eds) (1994) Integrating biotechnology into Eucalypt breeding. In: International symposium of wood biotechnology, Tokyo, August 31–September 1, 1994

    Google Scholar 

  • Gera M (2012) Poplar culture for speedy carbon sequestration in India: a case study from Terai region of Uttarakhand. Envis For Bull 12:75–83

    Google Scholar 

  • Glass D (1999) U.S. and international markets for phytoremediation. D. Glass Associates, Inc., Needham

    Google Scholar 

  • Grigal DF, Berguson WE (1998) Soil carbon changes associated with short rotation systems. Biomass Bioenergy 14(4):371–377

    Article  CAS  Google Scholar 

  • Gross M (2016) How can we save forest biodiversity? Curr Biol 26:R1167–R1176

    Article  CAS  Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta-analysis. Glob Chang Biol 8:345–360

    Article  Google Scholar 

  • Hall DO, House J, Scrase I (1999) Introduction. In: Rosillocalle F, Bajay S, Rothman H (eds) Industrial uses of biomass energy: the example of Brazil. Taylor and Francis, London, 304 p

    Google Scholar 

  • Hammer D, Kayser A, Keller C (2003) Phytoextraction of Cd and Zn with Salix viminalis in field trials. Soil Use Manag 19:187–192

    Article  Google Scholar 

  • Hansen EA (1993) Soil carbon sequestration beneath hybrid poplar plantations in the north central United States. Biomass Bioenergy 5:431–436

    Article  CAS  Google Scholar 

  • Hanson EA (1991) Poplar woody biomass yields: a look to the future. Biomass Bioenergy 1:1–7

    Article  Google Scholar 

  • Hardcastle PD, Calder I, Dingwall L, Garrett W, McChesney I, Mathews J, Savill P (2006) A review of the impacts of short rotation forestry. Final report on SRF by LTS International, February 2006

    Google Scholar 

  • Heilman PE, Stettler RF (1985) Genetic variation and productivity of black cotton wood and its hybrids. Part II. Biomass production in a 4 year plantation. Can J For Res 15:384–388. https://www.statista.com/statistics/625460/import-value-of-wood-india/. Retrieved on 14 Apr 2018

    Article  Google Scholar 

  • IPCC (2002) Climate and biodiversity, IPCC technical paper V. Habiba G, Avelino S, Robert T (eds) Watson and David Jon Dokken, Intergovernmental Panel on Climate Change

    Google Scholar 

  • IPCC (2013) Climate change 2013. The physical science basis. In: Stocker TF, Qin D‚ Plattner GK‚ Tignor M‚ Allen SK‚ Boschung J‚ Nauels A‚ Xia Y‚ Bex V and Midgley PM (eds) Contribution of Working Group I to the Fifth assessment report of the Intergovernmental Panel on Climate Change‚ Cambridge, United Kingdom and New York

    Google Scholar 

  • IUCN (2004) Afforestation and reforestation for climate change mitigation: potentials for Pan-European action. Published by The World Conservation Union and Foundation IUCN Poland (IUCN Programme Office for Central Europe)

    Google Scholar 

  • Jackson MB, Attwood PA (1996) Roots of willow (Salix viminalis L.) show marked tolerance to oxygen shortage in flooded soils and in solution culture. Plant Soil 187:37–45

    Article  CAS  Google Scholar 

  • Jalota RK, Sangha KK (2000) Comparative ecological-economic analysis of growth performance of exotic Eucalyptus tereticornis and indigenous Dalbergia sissoo in mono-culture plantations. Ecol Econ 33:487–495

    Article  Google Scholar 

  • Jenkinson DS, Philip C, Brookes DS (2004) Measuring soil microbial biomass. Soil Biol Biochem 36:5–7

    Article  CAS  Google Scholar 

  • Jhariya MK (2014) Effect of forest fire on microbial biomass, storage and sequestration of carbon in a tropical deciduous forest of Chhattisgarh. Ph.D. thesis. I.G.K.V., Raipur (C.G.), pp 259

    Google Scholar 

  • Jhariya MK (2017a) Vegetation ecology and carbon sequestration potential of shrubs in tropics of Chhattisgarh, India. Environ Monit Assess 189(10):518. https://doi.org/10.1007/s10661-017-6246-2

    Article  CAS  PubMed  Google Scholar 

  • Jhariya MK (2017b) Influences of forest fire on forest floor and litterfall dynamics in Bhoramdeo Wildlife Sanctuary (C.G.), India. J For Environ Sci 33(4):330–341

    Google Scholar 

  • Jhariya MK, Yadav DK (2018) Biomass and carbon storage pattern in natural and plantation forest ecosystem of Chhattisgarh, India. J For Environ Sci 34(1):1–11. https://doi.org/10.7747/JFES.2018.34.1.1

    Article  Google Scholar 

  • Jhariya MK, Bargali SS, Swamy SL, Kittur B (2012) Vegetational structure, diversity and fuel load in fire affected areas of tropical dry deciduous forests in Chhattisgarh. Vegetos 25(1):210–224

    Google Scholar 

  • Jhariya MK, Bargali SS, Swamy SL, Kittur B, Bargali K, Pawar GV (2014) Impact of forest fire on biomass and Carbon storage pattern of Tropical Deciduous Forests in Bhoramdeo Wildlife Sanctuary, Chhattisgarh. Int J Ecol Environ Sci 40(1):57–74

    Google Scholar 

  • Jhariya MK, Bargali SS, Raj A (2015) Possibilities and perspectives of agroforestry in Chhattisgarh. In: Zlatic M (ed) Precious forests-precious earth. InTech, Croatia, Europe, pp 237–257, 286 pages, ISBN: 978-953-51-2175-6. https://doi.org/10.5772/60841

  • Jhariya MK, Banerjee A, Yadav DK, Raj A (2018) Leguminous trees an innovative tool for soil sustainability. In: Meena RS, Das A, Yadav GS, Lal R (eds) Legumes for soil health and sustainable management. Springer, ISBN 978-981-13-0253-4 (eBook), ISBN: 978–981–13-0252-7 (Hardcover). https://doi.org/10.1007/978-981-13-0253-4_10

  • Jobbagy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Jug A, Makeschin F, Rehfuessa KE, Hofmann-Schielle C (1999) Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. III. Soil ecological effects. For Ecol Manag 121:85–99

    Article  Google Scholar 

  • Kahle P, Hildebrand E, Baum C, Babara BB (2007) Long-term effects of short rotation forestry with willows and poplar on soil properties. Archiv Agro Soil Sci 53(6):673–682

    Article  Google Scholar 

  • Kahle P, Baum C, Boelcke B, Kohl J, Ulrich R (2010) Vertical distribution of soil properties under short-rotation forestry in Northern Germany. J Plant Nutr Soil Sci 173:737–746

    Article  CAS  Google Scholar 

  • Kanime N, Kaushal R, Tewari SK, Raverkar KP, Chaturvedi S, Chaturvedi OP (2013) Biomass production and carbon sequestration in different tree-based systems of Central Himalayan Tarai region. For Trees Liveli 22:38–50

    Article  Google Scholar 

  • Kaul M, Mohren GMJ, Dadhwal VK (2010) Carbon storage and sequestration potential of selected tree species in India. Mitig Adapt Strateg Glob Chang 15:489–510

    Article  Google Scholar 

  • Keith AM, Rowel RL, Parmar K, Perks MP, Mackie E, Dondini M, McNamara NP (2015) Implications of land-use change to Short Rotation Forestry in Great Britain for soil and biomass carbon. GCB Bioenergy 7:541–552

    Article  CAS  Google Scholar 

  • Kittur B, Swamy SL, Bargali SS, Jhariya MK (2014a) Wildland fires and moist deciduous forests of Chhattisgarh, India: divergent component assessment. J For Res 25(4):857–866. https://doi.org/10.1007/s11676-014-0471-0

    Article  CAS  Google Scholar 

  • Kittur B, Jhariya MK, Lal C (2014b) Is the forest fire can affect the regeneration and species diversity. Ecol Environ Conserv 20(3):989–994

    Google Scholar 

  • Krisnawati H, Kallio M, Kanninen M (2011) Anthocephalus cadamba Miq.: ecology, silviculture and productivity. CIFOR, Bogor,. , 11p. https://doi.org/10.17528/cifor/003396

    Book  Google Scholar 

  • Kumar PA, Sharma VK, Ginwal HS (2010) Sustained hybrid vigor in F Hybrids of 1 Eucalyptus torelliana F.v. Muell x E. citriodora Hook. World Appl Sci J 11:830–834

    Google Scholar 

  • Kumar S, Meena RS, Bohra JS (2018) Interactive effect of sowing dates and nutrient sources on dry matter accumulation of Indian mustard (Brassica juncea L.). J Oilseed Brassica 9(1):72–76

    Google Scholar 

  • Lal P (2010) Clonal forestry in India. Ind For 136(1):17–37

    Google Scholar 

  • Landsberg J, Prince S, Jarvis P, McMurtrie R, Luxmoore R, Medlyn B (1997) Energy conversion and use in forestry: an analysis of forest production in terms of radiation utilization efficiency. In: Gholz HL, Nakane K, Shimoda H (eds) The use of remote sensing in the modeling of forest productivity. Kluwer Academic Publishers, London

    Google Scholar 

  • Laureysens I, Blust R, De Temmerman L, Lemmens C, Ceulemans R (2004a) Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture: I. Seasonal variation in leaf, wood and bark concentrations. Environ Pollut 131:485–494

    Article  CAS  PubMed  Google Scholar 

  • Laureysens I, Bogaert J, Blust R, Ceulemans R (2004b) Biomass production of 17 poplar clones in a short-rotation coppice culture on a waste disposal site and its relation to soil characteristics. For Ecol Manag 187:295–309

    Article  Google Scholar 

  • Lindegaard KN, Adams PWR, Holley M, Lamley A, Henriksson A, Larsson S, von Engelbrechten HG, Lopez GE, Pisarek M (2016) Short rotation plantations policy history in Europe: lessons from the past and recommendations for the future. Food Energy Secur 5(3):125–152

    Article  PubMed  PubMed Central  Google Scholar 

  • Locatelli B, Pavageau C, Pramova E, Di Gregorio M (2015) Integrating climate change mitigation and adaptation in agriculture and forestry: opportunities and trade-offs. Wiley Interdiscip Rev Clim Chang 6:585–598. https://doi.org/10.1002/wcc.357

    Article  Google Scholar 

  • Lorenz K, Lal R (2005) The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Advan Agro 88:35–66

    Article  CAS  Google Scholar 

  • Lutter R, Tullus A, Kanal A, Tullus T, Vares A, Tullus H (2015) Growth development and plant-soil relations in mid-term silver birch (Betula pendula Roth) plantations on previous agricultural lands in hemiboreal Estonia. Eur J For Res 134:653–667

    Article  Google Scholar 

  • Lutter R, Tullus A, Kanal A, Tullus T, Tullus H (2016) The impact of short-rotation hybrid aspen (Populus tremula L. × P. tremuloides Michx.) plantations on nutritional status of former arable soils. For Ecol Manag 362:184–193

    Article  Google Scholar 

  • Makeschin F (1994) Effects of energy forestry on soils. Biomass Bioenergy 6:63–79

    Article  CAS  Google Scholar 

  • Makino S, Goto H, Hasegawa M, Okabe K, Tanaka H, Inoue T, Okochi I (2007) Degradation of longicorn beetle (Coleoptera, Cerambycidae, Disteniidae) fauna caused by conversion from broad-leaved to manmade conifer stands of Cryptomeria japonica (Taxodiaceae) in central Japan. Ecol Res 22:372–381

    Article  Google Scholar 

  • Mao R, Zeng D (2010) Changes in soil particulate organic matter, microbial biomass and activity following afforestation of marginal agricultural lands in a semi-arid area of Northeast China. Environ Manag 46:110–116

    Article  Google Scholar 

  • Martin W, Nordh NE (2009) Biomass producing with fast growing trees on agricultural lands in cool temperate regions: possibilities, limitations, challenges. In: Biomass gasification: chemistry, processes and applications. Nova Science Publishers, New York, pp 353–368

    Google Scholar 

  • Masoodi TH, Bhat GM, Sofi PA, Gangoo SA, Malik AR, Sheikh MQ, Mir AA (2014) Economic feasibility of short rotation coppice willows for biomass production in Kashmir. Indian J Agrofor 16(2):40–46

    Google Scholar 

  • Mead DJ (2005) Forests for energy and the role of planted trees. Crit Rev Plant Sci 24:407–421

    Article  Google Scholar 

  • Meena H, Meena RS (2017) Assessment of sowing environments and bio-regulators as adaptation choice for clusterbean productivity in response to current climatic scenario. Bangladesh J Bot 46(1):241–244

    Google Scholar 

  • Meena RS, Dhakal Y, Bohra JS, Singh SP, Singh MK, Sanodiya P (2015) Influence of bioinorganic combinations on yield, quality and economics of Mungbean. Am J Exp Agri 8(3):159–166

    CAS  Google Scholar 

  • Meena H, Meena RS, Singh B, Kumar S (2016) Response of bio-regulators to morphology and yield of clusterbean [Cyamopsis tetragonoloba (L.) Taub.] under different sowing environments. J Appl Nat Sci 8(2):715–718

    Article  CAS  Google Scholar 

  • Meena RS, Meena PD, Yadav GS, Yadav SS (2017) Phosphate solubilizing microorganisms, principles and application of microphos technology. J Clean Prod 145:157–158

    Article  Google Scholar 

  • Meifang Y, Lu W, Honghui R, Xinshi Z (2017) Biomass production and carbon sequestration of a short-rotation forest with different poplar clones in northwest China. Sci Total Environ 586:1135–1140. https://doi.org/10.1016/j.scitotenv.2017.02.103

    Article  CAS  PubMed  Google Scholar 

  • Mercker D (2007) Short rotation woody crops for biofuels. University of Tennessee Agricultural Experiment Station. http://www.utextension.utk.edu/publications/spfiles/SP702-C.pdf

  • Minor MA, Volk TA, Norton RA (2004) Effects of site preparation techniques on communities of soil mites (Acari: Oribatida, Acari: Gamasida) under short-rotation forestry plantings in New York, USA. Appl Soil Ecol 25(3):181–192

    Article  Google Scholar 

  • Mohapatra SP, Niloy K, Bhattacherjee SD, Upadhyaya P (2005) Scope of production forestry in enhancing carbon mitigation in India: a preliminary report Ashoka Trust for Research in Ecology and the Environment (ATREE), New Delhi, December 30, 2005

    Google Scholar 

  • Mola-Yudego B, Pelkonen P (2008) The effects of policy incentives in the adoption of willow short rotation coppice for bioenergy in Sweden. Energy Policy 36:3062–3068

    Article  Google Scholar 

  • Montagnini F, Nair PKR (2004) Carbon sequestration: an underexploited environmental benefit of agroforestry systems. Agrofor Syst 61:281–295

    Google Scholar 

  • Muys B, Lust N, Granval PH (1992) Effects of grassland and afforestation with different tree species on earthworm communities, litter decomposition and nutrient status. Soil Biol Biochem 24(12):1459–1466

    Article  Google Scholar 

  • NAS (1983) Firewood crops II. National Academy of Science, Washington, DC

    Google Scholar 

  • O’Connell AM, Grove TS (1999) Eucalypt plantations in south-western Australia. In: Nambiar EKS, Cossalter C, Tiarks A (eds) Site management and productivity in tropical plantation forests: workshop proceedings 16–20 February 1998, Pietermaritzburg, South Africa. Center for International Forestry Research, Bogor, pp 53–59

    Google Scholar 

  • Pandey DS, Singh SP, Singh G (2015) Underprivileged agriculture: retrospection and future prospects. In: Pandey GB (ed) Compendium of lectures on management of underprivileged agriculture. Pant Nagar University of Agriculture and Technology, Pantnagar, 311p

    Google Scholar 

  • Paritsis J, Aizen MA (2008) Effects of exotic conifer plantations on the biodiversity of understory plants, epigeal beetles and birds in Nothofagusdombeyi forests. For Ecol Manag 255:1575–1583

    Article  Google Scholar 

  • Pathak PS, Gupta SK, Debroy R (1981) Production of aerial biomass in Leucaena leucocephala. Indian For 107:416–419

    Google Scholar 

  • Patil SJ, Patil HY, Mutanal SM, Shahapurmath G (2012) Growth and productivity of Acacia mangium clones on shallow red soil. Karnataka J Agric Sci 25(1):94–95

    Google Scholar 

  • Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002) Change in soil carbon following afforestation. For Ecol Manag 168:241–257

    Article  Google Scholar 

  • Pellegrino E, Bene CD, Tozzini C, Bonari E (2011) Impact on soil quality of a 10-year-old short-rotation coppice poplar stand compared with intensive agricultural and uncultivated systems in a Mediterranean area. Agric Ecosyst Environ 140:245–254

    Article  Google Scholar 

  • Ponnamal NR, Gnanam A (1988) Studies on biomass production in a species trial in South India. Leucaena Res Rep 9:53

    Google Scholar 

  • Post WM, Kwon WM (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Chang Biol 6:317–327

    Article  Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Strangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159

    Article  CAS  Google Scholar 

  • Poultouchidou A (2012) Effects of forest plantations on soil carbon sequestration and farmers’ livelihoods – a case study in Ethiopia. Master’s thesis submitted in Department of Soil and Environment, Swedish University of Agricultural Sciences, Sweden

    Google Scholar 

  • Prasad JVNS, Gangaiah B, Kundu S, Korwar GR, Venkateswarlu B, Singh VP (2009) Potential of short rotation woody crops for pulp fiber production from arable lands in India. Indian J Agron 54:380–394

    Google Scholar 

  • Puri S, Singh V, Bhushan B, Singh S (1994) Biomass production and distribution of roots in three stands of Populus deltoides. For Ecol Manag 65(2–3):135–147

    Article  Google Scholar 

  • Rai RSV, Srinivasan VM (2012) High density short rotation studies in Eucalyptus tereticornis and Casuarina equisetifolia. Int Tree Crops J 6(2–3):113–122. https://doi.org/10.1080/01435698.1990.9752878

    Article  Google Scholar 

  • Raj A, Jhariya MK (2016a) Wasteland development through forestry. Van Sangyan 3(3):30–33

    Google Scholar 

  • Raj A, Jhariya MK (2016b) Joint forest management (JFM): a program to conserve forest and environment. Van Sangyan 3(6):38–42

    Google Scholar 

  • Raj A, Jhariya MK, Bargali SS (2016) Bund based agroforestry using Eucalyptus species: a review. Curr Agric Res J 4(2):148–158

    Article  Google Scholar 

  • Raj A, Jhariya MK, Bargali SS (2018a) Climate smart agriculture and carbon sequestration. In: Pandey CB, Gaur MK, Goyal RK (eds) Climate change and agroforestry: adaptation mitigation and livelihood security. New India Publishing Agency (NIPA), New Delhi, pp 1–19, ISBN: 9789-386546067

    Google Scholar 

  • Raj A, Jhariya MK, Harne SS (2018b) Threats to biodiversity and conservation strategies. In: Sood KK, Mahajan V (eds) Forests, climate change and biodiversity. Kalyani Publisher, New Delhi, pp 304, 381 p–320

    Google Scholar 

  • Rajoriya MC, Ain Q, Jat BL (2016) Willows of Kashmir and their significance. Int J Res Appl Sci Eng Tech 4(11):69–78

    Google Scholar 

  • Ram K, Meena RS (2014) Evaluation of pearl millet and mungbean intercropping systems in Arid Region of Rajasthan (India). Bangladesh J Bot 43(3):367–370

    Article  Google Scholar 

  • Raman TRS (2006) Effects of habitat structure and adjacent habitats on birds in tropical rainforest fragments and shaded plantations in the Western Ghats, India. Biodivers Conserv 15:1577–1607

    Article  Google Scholar 

  • Ranger J, Belgrand CM (1996) Nutrient dynamics of the chestnut tree (Castanea sativa Mill) in coppice stands. For Ecol Manag 86(1–3):259–277

    Article  Google Scholar 

  • Ravindranath NH, Fearnside PM, Makundi W, Masera O, Dixon R (2000) Forestry sector. In: Methodological and technological issues in technology transfer, a special IPCC report of the Working Group III, Cambridge University Press, Cambridge, USA

    Google Scholar 

  • Ray MP (1971) Plantations of Casuarina equisetifolia in the Midnapore district, West Bengal. Indian For 97(8):443–457

    Google Scholar 

  • Ritter E, Vesterdal L, Gundersen P (2003) Changes in soil properties after afforestation of former intensively managed soils with oak and Norway spruce. Plant Soil 249:319–330

    Article  CAS  Google Scholar 

  • Rockwood DL, Naidu CV, Carter DR, Rahman M, Spriggsm TA, Lin C, Alker GR, Isebrands JG, Segrest SA (2004) Short-rotation woody crops and phytoremediation: opportunities for agroforestry? Agrofor Syst 61:51–63

    Google Scholar 

  • Rooney DC, Killham K, Bending GD, Baggs E, Weih M, Hodge A (2009) Mycorrhizas and biomass crops: opportunities for future sustainable development. Trends Plant Sci 14(10):542–549

    Article  CAS  PubMed  Google Scholar 

  • Rowe R, Street N, Taylor G (2009) Identifying potential environmental impacts of large-scale deployment of dedicated bio-energy crops in the UK. Renew Sust Energ Rev 13(1):271–290. https://doi.org/10.1016/j.rser.2007.07.008

    Article  Google Scholar 

  • Roygard JKF (1999) Land treatment of dairy- farm effluent using short rotation forestry. Ph.D. thesis submitted to Massey University, New Zealand

    Google Scholar 

  • Rytter RM (2012) The potential of willow and poplar plantations as carbon sinks in Sweden. Biomass Bioenergy 36:86–95

    Article  CAS  Google Scholar 

  • Sachs RM, Low CB (1983) Yields in high density, short rotation intensive culture (SRIC)-plantations of Eucalyptus and other hardwood species. In: Standiford RB, Ledig, TF (technical coordinators). In: Proceedings of a work-shop on Eucalyptus in California, June 14–16, 1983, Sacramento, California. Gen. Tech. Rep. PSW 69 Berkeley, CA: Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture, pp 71–75

    Google Scholar 

  • Saddler JN (2002) The potential of short rotation forestry on marginal farmland in BC and Alberta to provide a feedstock for energy generation and to reduce greenhouse gas emissions. Sustainable Forest Management Network, G208, Biological Sciences Building, University of Alberta. http://www.ualberta.ca/sfm

  • Samson R, Girouard P, Zan C, Mehdi B, Martin R, Henning J (1999) The implications of growing short-rotation tree species for carbon sequestration in Canada. Final report for joint forest sector table/sinks table. Afforestation#5.National Climate Change Process Solicitation. No. 23103–8-253/N. REAP Canada, Ste. Anne de Bellevue, QC

    Google Scholar 

  • Sarangle S, Rajasekaran A, Benbi DK, Chauhan SK (2018) Biomass and carbon stock, carbon sequestration potential under selected land use systems in Punjab. For Res Eng: Int J 2(2):77–82

    Google Scholar 

  • Saravanan S, Vijayaraghvan A (2014) Casuarina equisetifolia based agroforestry systems for higher economic returns for the farming communities in Tamil Nadu, India. Abstract published in the proceedings of fifth Casuarina Workshop. Mamallapuram, Chennai India, 03–07 February, 2014. http://envis.nic.in/ifgtb/

  • Sauer TJ, James DE, Cambardella CA, Hernandez-Ramirez G (2012) Soil properties following reforestation or afforestation of marginal cropland. Plant Soil 360:375–390. https://doi.org/10.1007/s11104-012-1258-8

    Article  CAS  Google Scholar 

  • Schmerbeck J, Naudiyal N (2014a) Acacia auriculiformis. In: Roloff A, Weisgerber H, Lang UM, Stimm B (eds) Enzyklopädie der Holzgewächse, Wiley-VCH & Verlag Co. https://www.researchgate.net/publication/271854500_Acacia_auriculiformis

  • Schmerbeck J, Naudiyal N (2014b). Acacia auriculiformis. Enzyklopädie der Holzgewächse 65 Erg. Lfg. 01/14. https://doi.org/10.1002/9783527678518.ehg2014002

  • Schroeder P (1992) Carbon storage potential of short rotation tropical tree plantations. For Ecol Manag 50:31–41

    Article  Google Scholar 

  • Segrest SA, Rockwood DL, Stricker JA, Alker GR (2001) Partnering to cofire woody biomass in central Florida. In: Abstracts 5th biomass conference of the Americas, 2 pp. http://bioproductsbioenergy.gov/pdfs/bcota/abstracts/4/z280.pdf

  • Sharma R, Chauhan SK, Tripathi AM (2016) Carbon sequestration potential in agroforestry system in India: an analysis for carbon project. Agrofor Syst 90:631–644

    Article  Google Scholar 

  • Sihag SK, Singh MK, Meena RS, Naga S, Bahadur SR, Gaurav YRS (2015) Influences of spacing on growth and yield potential of dry direct seeded rice (Oryza sativa L.) cultivars. Ecoscan 9(1–2):517–519

    Google Scholar 

  • Sims RH, Hastings A, Schlamadinger B, Taylor G, Smith P (2006) Energy crops: current status and future prospects. Glob Chang Biol 12:2054–2076

    Article  Google Scholar 

  • Singh NR, Jhariya MK (2016) Agroforestry and agrihorticulture for higher income and resource conservation. In: Narain S, Rawat SK (eds) Innovative technology for sustainable agriculture development. Biotech Books, New Delhi, pp 125–145. ISBN: 978-81-7622-375-1

    Google Scholar 

  • Singh R, Lal M (2000) Sustainable forestry in India for carbon mitigation. Curr Sci 78(5):563–567

    Google Scholar 

  • Singh V, Toky OP (1995) Biomass and net primary productivity in Leucaena, Acacia and Eucalyptus, short rotation, high density (‘energy’) plantations in arid India. J Arid Environ 31:301–309

    Article  Google Scholar 

  • Singh YP, Singh G, Sharma DK (2010) Biomass and bio-energy production of ten multipurpose tree species planted in sodic soils of Indo–Gangetic plains. J For Res 21(1):19–24. https://doi.org/10.1007/s11676-010-0003-5

    Article  CAS  Google Scholar 

  • Singh NR, Jhariya MK, Loushambam RS (2014) Performance of Soybean and Soil Properties under Poplar Based Agroforestry System in Tarai Belt of Uttarakhand. Ecol Environ Conserv 20(4):1569–1573

    Google Scholar 

  • Smethurst PJ, Nambiar EKS (1990) Distribution of carbon and nutrients and fluxes of mineral nitrogen after clear-felling a P. radiata plantation. Can J For Res 20:1490–1497

    Article  CAS  Google Scholar 

  • Steenackers V (1990) 40 years of poplar research in Geraardsbergen. Geraardsbergen, Belgium, Station voor Populierenteelt

    Google Scholar 

  • Stephens SS, Wagner MR (2017) Forest plantations and biodiversity: a fresh perspective. J For 105(6):307–313

    Google Scholar 

  • Stricker JA, Rockwood DL, Segrest SA, Alker GR, Prine GM, Carter DR (2000) Short rotation woody crops for Florida. University of Florida. http://www.treepower.org/papers/strickerny

  • Styles D, Jones M (2007) Energy crops in Ireland: quantifying the potential life-cycle greenhouse gas reductions of energy-crop electricity. Biomass Bioenergy 31(11–12):759–772

    Article  CAS  Google Scholar 

  • Teepe R, Dilling H, Beese F (2003) Estimating water retention curves of forest soils from soil texture and bulk density. J Plant Nutr Soil Sci 166:111–119

    Article  CAS  Google Scholar 

  • Tomasevic JA, Estades CF (2008) Effects of the structure of pine plantations on their softness as barriers for ground-dwelling forest birds in south-central Chile. For Ecol Manag 255(3):810–816

    Article  Google Scholar 

  • Tuskan GA (1998) Short-rotation forestry: what we know and what we need to know. Biomass Bioenergy 14:307–315

    Article  CAS  Google Scholar 

  • Tuskan GA, Walsh ME (2001) Short rotation woody crop systems, atmospheric carbon dioxide and management: a US case study. For Chron 77:259–264

    Article  Google Scholar 

  • Ulzen-Appiah F, Briggs RD, Abrahamson LP, Bickelhaupt DH (2000) Soil carbon pools in short rotation willow (Salix dasyclados) plantation four years after establishment. In: Proceedings of bioenergy 2000, Buffalo, NY October, pp 15–19

    Google Scholar 

  • UNFCCC (1998) Kyoto protocol to the United Nations framework convention on climate change. United Nations, New York

    Google Scholar 

  • Updegraff K, Baughman MJ, Taff SJ (2004) Environmental benefits of cropland conversion to hybrid poplar: economic and policy considerations. Biomass Bioenergy 27(5):411–428

    Article  Google Scholar 

  • Uri V, Lohmus K, Mander Ü, Ostonen I, Aosaar J, Maddison M, Helmisaari HS, Augustin J (2011) Long-term effects on the nitrogen budget of a short-rotation grey alder (Alnusincana (L.) Moench) forest on abandoned agricultural land. Ecol Eng 37:920–930

    Article  Google Scholar 

  • van der Werf GR, Morton DC, DeFries RS, Olivier JGJ, Kasibhatla PS, Jackson RB, Collatz GJ, Randerson JT (2009) CO2 emissions from forests. Nat Geosci 2:737–738

    Article  CAS  Google Scholar 

  • Vanguelova E, Pitman R (2011) Impacts of short rotation forestry on soil sustainability. In: MCKay H (ed) Short rotation forestry: review of growth and environmental impacts. Forest Research Monograph, vol 2, pp 37–77

    Google Scholar 

  • Verma BC, Datta SP, Rattan RK, Singh AK (2010) Monitoring changes in soil organic carbon pools, nitrogen, phosphorus, and sulfur under different agricultural management practices in the tropics. Environ Monit Assess 171:579–593

    Article  CAS  PubMed  Google Scholar 

  • Verma JP, Meena VS, Kumar A, Meena RS (2015) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health: a book review. J Clean Prod 107:793–794

    Article  Google Scholar 

  • Vesterdal L, Ritter E, Gunders P (2002) Change in soil organic carbon following afforestation of former arable land. For Ecol Manag 169(1–2):137–147

    Article  Google Scholar 

  • Vitousek PM (1991) Can planted forests counteract increasing atmospheric carbon dioxide? J Environ Qual 20:348–354

    Article  Google Scholar 

  • Walker B (1995) Conserving biological diversity through ecosystem resilience. Conserv Biol 9:747–752

    Article  Google Scholar 

  • Walle IV, Camp NV, Van de Casteele L, Kris Verheyen K, Lemeur R (2007) Shortrotation forestry of birch, maple, poplar and willow in Flanders (Belgium) II. Energy production and CO2 emission reduction potential. Biomass Bioenergy 31(5):276–283

    Article  Google Scholar 

  • Wang Y, Bai G, Guofan Shao G, Cao Y (2014) An analysis of potential investment returns and their determinants of poplar plantations in state-owned forest enterprises of China. New For 45(2):251–264

    Article  Google Scholar 

  • WEC (World Energy Council) (1999) The challenge of rural energy poverty in developing countries. FAO, World Energy Council, London

    Google Scholar 

  • Wright LL, Tuskan GA (1997) Strategy, results and directions for woody crop research funded by the U.S. Department of Energy. TAPPI, Pulping conference, TAPPI Press, pp 791–799

    Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci 96:1463–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav HR (1986) ‘The concept of wasteland’, dimensions of wastelands development. In: Proceedings of national seminar on wastelands development, New Delhi’, pp 3–7

    Google Scholar 

  • Yadav GS, Babu S, Meena RS, Debnath C, Saha P, Debbaram C, Datta M (2017) Effects of godawariphosgold and single supper phosphate on groundnut (Arachis hypogaea) productivity, phosphorus uptake, phosphorus use efficiency and economics. Indian J Agric Sci 87(9):1165–1169

    CAS  Google Scholar 

  • Yadav GS, Lal R, Meena RS, Datta M, Babu S, Das, Layek J, Saha P (2017b) Energy budgeting for designing sustainable and environmentally clean/safer cropping systems for rainfed rice fallow lands in India. J Clean Prod 158:29–37

    Article  Google Scholar 

  • Zan CS, Fyles JW, Girouard P, Samson RA (2001) Carbon sequestration in perennial bioenergy, annual corn and uncultivated systems in southern Quebec. Agric Ecosyst Environ 86(2):135–144

    Article  Google Scholar 

  • Zha T, Kellomäki S, Wang KY, Rouvinen I (2004) Carbon sequestration and ecosystem respiration for 4 years in a Scots pine forest. Glob Chang Biol 10:1492–1503

    Article  Google Scholar 

  • Zhou X, Yuanguang W, Goodale U, Zuo H, Zhu H, Li X, Yo Y, Yan L, Su Y, Huang X (2017) Optimal rotation length for carbon sequestration in Eucalyptus plantations in subtropical China. New For 48:609. https://doi.org/10.1007/s11056-017-9588-2

    Article  Google Scholar 

  • Zurba KQA (2016) Is short rotation forestry biomass sustainable? M.Sc. dissertation submitted to Fakultätfür Geowissenschaften, Geotechnik und Bergbau der Technischen Universität Bergakademie Freiberg

    Google Scholar 

  • Zurba K, Matschullat J (2015) Short rotation forestry (SRF) versus rapeseed plantations: insights from soil respiration and combustion heat per area. Energy Procedia 76:398–405

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, N.R., Kamini, Kumar, N., Kumar, D. (2019). Short-Rotation Forestry: Implications for Carbon Sequestration in Mitigating Climate Change. In: Jhariya, M., Banerjee, A., Meena, R., Yadav, D. (eds) Sustainable Agriculture, Forest and Environmental Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-6830-1_11

Download citation

Publish with us

Policies and ethics