Skip to main content

Laboratory Tests in Liver Diseases

  • Chapter
  • First Online:
Diagnosis of Liver Disease

Abstract

Laboratory tests for evaluating liver diseases are essential. This chapter reviews routine biochemical tests and disease-specific laboratory tests. Algorithms for assessing acute and chronic hepatobiliary enzyme elevation are suggested. The degree of hepatic fibrosis has been established to be the most significant determinant of mortality/morbidity in chronic liver diseases. Liver biopsy is the gold standard for the diagnosis of hepatic fibrosis, but it has several drawbacks such as invasiveness, cost, and risk. We here review noninvasive fibrosis parameters, including hepatic fibrosis markers, and several scoring systems. Nonalcoholic fatty liver disease (NAFLD) is becoming the most common liver disease all over the world. Diagnostic algorithm for NAFLD is also established to detect severe fibrosis (stage 3/4). Severity of cirrhosis was usually assessed by Child-Pugh score, MELD score, and ALBI grade. We also discuss the significance of tumor markers such as α-fetoprotein (AFP), fucosylated AFP, and des-gamma-carboxyprothrombin in order to detect liver cancer and evaluate its treatment efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Aromatic amino acid

AASLD:

American Association for the Study of Liver Diseases

ACA:

Anti-centromere antibodies

ACG:

American College of Gastroenterology

AFP:

α-fetoprotein

AFP-L3:

Fucosylated AFP

AIH:

Autoimmune hepatitis

ALBI:

Albumin-bilirubin

ALD:

Alcoholic liver disease

ALP:

Alkaline phosphatase

ALT:

Alanine aminotransferase

ANA:

Antinuclear antibodies

anti-LKM:

Antibodies to liver/kidney microsome

APASL:

Asian Pacific Association for the Study of the Liver

APRI:

AST to platelet ratio index

ARFI:

Acoustic radiation force impulse

ASMA:

Anti-smooth muscle antibodies

AST:

Aspartate aminotransferase

AAR:

AST to ALT ratio

BCAA:

Branched-chain amino acid

BTR:

BCAA/tyrosine ratio

CHB:

Chronic hepatitis B

CHC:

Chronic hepatitis C

CK:

Creatine kinase

CLD:

Chronic liver disease

DCP:

Des-γ-carboxyprothrombin

DIC:

Disseminated intravascular coagulation

DILI:

Drug-induced liver injury

EASL:

European Association for the Study of the Liver

ECM:

Extracellular matrix

ELF score:

Enhanced liver fibrosis score

FIB4 index:

Fibrosis-4 index

GGT:

γ-glutamyl transferase

GPC3:

Glypican-3

GPI:

Glycosylphosphatidylinositol

HBV:

Hepatitis B virus

HCC:

Hepatocellular carcinoma

HCV:

Hepatitis C virus

HIV:

Human immunodeficiency virus

HPLC:

High-performance liquid chromatography

HSC:

Hepatic stellate cell

HSPG:

Heparan sulfate proteoglycan

ICG:

Indocyanine green

ICP:

Intrahepatic cholestasis of pregnancy

IFN-γ:

Interferon-γ

IgA:

Immunoglobulin A

IgE:

Immunoglobulin E

IgG:

Immunoglobulin G

IgM:

Immunoglobulin M

INR:

International normalized ratio

IL-6:

Interleukin-6

JSH:

Japanese Society of Hepatology

LCA:

Lens culinaris agglutinin A

LDH:

Lactate dehydrogenase

LSEC:

Liver sinusoidal endothelial cell

M2BP:

Mac-2 binding protein

M2BPGi:

Mac-2-binding protein glycosylation isomer

MELD:

Model for end-stage liver disease

MRE:

Magnetic resonance elastography

MRI:

Magnetic resonance imaging

NAFLD:

Nonalcoholic fatty liver disease

PIIINP:

Procollagen type III N-terminal peptide

PBC:

Primary biliary cholangitis

PDD:

Pulse dye densitometer

Pro-C3:

N-terminal propeptide of type III collagen

PSC:

Primary sclerosing cholangitis

PT:

Prothrombin time

SRCR:

Scavenger receptor cysteine-rich domain

SVR:

Sustained virological response

T4C7S:

Type 4 collagen 7S

TIMP-1:

Tissue inhibitor of matrix metalloprotease-1

TIPS:

Transjugular intrahepatic portosystemic shunt

TNF-α:

Tumor necrosis factor-α

UDP:

Uridine diphosphate

WFA:

Wisteria floribunda agglutinin

References

  1. Prati D, Taioli E, Zanella A, et al. Updated definitions of healthy ranges for serum alanine aminotransferase levels. Ann Intern Med. 2002;137:1–10.

    CAS  PubMed  Google Scholar 

  2. Kwo PY, Cohen SM, Lim JK. ACG Clinical Guideline: evaluation of abnormal liver chemistries. Am J Gastroenterol. 2017;112:18–35.

    CAS  PubMed  Google Scholar 

  3. Litin SC, O’Brien JF, Pruett S, et al. Macroenzyme as a cause of unexplained elevation of aspartate aminotransferase. Mayo Clin Proc. 1987;62:681–7.

    CAS  PubMed  Google Scholar 

  4. Poupon R. Liver alkaline phosphatase: a missing link between choleresis and biliary inflammation. Hepatology. 2015;61(6):2080–90.

    CAS  PubMed  Google Scholar 

  5. Matsushita M, Komoda T. Relationship between the effects of a high-fat meal and blood group in determination of alkaline phosphatase activity. Rinsho Byori. 2011;59:923–9.

    CAS  PubMed  Google Scholar 

  6. Vilstrup H, Amodio P, Bajaj J, et al. Hepatic encephalopathy in chronic liver disease: 2014 Practice Guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver. Hepatology. 2014;60:715–35.

    PubMed  Google Scholar 

  7. Kamath PS, Wiesner RH, Malinchoc M, et al. A model to predict survival in patients with end-stage liver disease. Hepatology. 2001;33:464–70.

    CAS  Google Scholar 

  8. Wiesner R, Edwards E, Freeman R, et al. Model for end-stage liver disease (MELD) and allocation of donor livers. Gastroenterology. 2003;124:91–6.

    PubMed  Google Scholar 

  9. Johnson PJ, Berhane S, Kagebayashi C, et al. Assessment of liver function in patients with hepatocellular carcinoma: a new evidence-based approach-the ALBI grade. J Clin Oncol. 2015;33:550–8.

    PubMed  Google Scholar 

  10. Chalasani NP, Hayashi PH, Bonkovsky HL, et al. ACG Clinical Guideline: the diagnosis and management of idiosyncratic drug-induced liver injury. Am J Gastroenterol. 2014;109:950–66.

    PubMed  Google Scholar 

  11. Hiraoka A, Kumada T, Michitaka K, et al. Usefulness of albumin-bilirubin grade for evaluation of prognosis of 2584 Japanese patients with hepatocellular carcinoma. J Gastroenterol Hepatol. 2016;31:1031–6.

    CAS  PubMed  Google Scholar 

  12. Maleki I, Aminafshari MR, Taghvaei T, et al. Serum immunoglobulin A concentration is a reliable biomarker for liver fibrosis in non-alcoholic fatty liver disease. World J Gastroenterol. 2014;20:12566–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Oertelt S, Rieger R, Selmi C, et al. A sensitive bead assay for antimitochondrial antibodies: chipping away at AMA-negative primary biliary cirrhosis. Hepatology. 2007;45:659–65.

    CAS  PubMed  Google Scholar 

  14. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115:209–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Svegliati-Baroni G, De Minicis S, Marzioni M. Hepatic fibrogenesis in response to chronic liver injury: novel insights on the role of cell-to-cell interaction and transition. Liver Int. 2008;28:1052–64.

    CAS  PubMed  Google Scholar 

  16. Moller S, Henriksen JH. Cardiovascular complications of cirrhosis. Postgrad Med J. 2009;85:44–54.

    CAS  PubMed  Google Scholar 

  17. Mas VR, Fisher RA, Archer KJ, et al. Proteomics and liver fibrosis: identifying markers of fibrogenesis. Expert Rev Proteomics. 2009;6:421–31.

    CAS  PubMed  Google Scholar 

  18. Piccinino F, Sagnelli E, Pasquale G, et al. Complications following percutaneous liver biopsy. A multicentre retrospective study on 68,276 biopsies. J Hepatol. 1986;2:165–73.

    CAS  PubMed  Google Scholar 

  19. Ratziu V, Charlotte F, Heurtier A, et al. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology. 2005;128:1898–906.

    PubMed  Google Scholar 

  20. Yoneda M, Yoneda M, Fujita K, et al. Transient elastography in patients with non-alcoholic fatty liver disease (NAFLD). Gut. 2007;56:1330–1.

    PubMed  PubMed Central  Google Scholar 

  21. Yoneda M, Suzuki K, Kato S, et al. Nonalcoholic fatty liver disease: US-based acoustic radiation force impulse elastography. Radiology. 2010;256:640–7.

    PubMed  Google Scholar 

  22. Castera L, Forns X, Alberti A. Non-invasive evaluation of liver fibrosis using transient elastography. J Hepatol. 2008;48:835–47.

    PubMed  Google Scholar 

  23. Harrison SA, Oliver D, Arnold HL, et al. Development and validation of a simple NAFLD clinical scoring system for identifying patients without advanced disease. Gut. 2008;57:1441–7.

    CAS  PubMed  Google Scholar 

  24. Angulo P, Hui JM, Marchesini G, et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology. 2007;45:846–54.

    CAS  PubMed  Google Scholar 

  25. Sumida Y, Yoneda M, Hyogo H, et al. A simple clinical scoring system using ferritin, fasting insulin, and type IV collagen 7S for predicting steatohepatitis in nonalcoholic fatty liver disease. J Gastroenterol. 2011;46:257–68.

    CAS  PubMed  Google Scholar 

  26. Imajo K, Kessoku T, Honda Y, et al. Magnetic resonance imaging more accurately classifies steatosis and fibrosis in patients with onalcoholic fatty liver disease than transient elastography. Gastroenterology. 2016;150:626–37.

    PubMed  Google Scholar 

  27. Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem. 2000;275:2247–50.

    CAS  PubMed  Google Scholar 

  28. Wake K. Perisinusoidal stellate cells (fat-storing cells, interstitial cells, lipocytes), their related structure in and around the liver sinusoids, and vitamin A-storing cells in extrahepatic organs. Int Rev Cytol. 1980;66:303–53.

    CAS  PubMed  Google Scholar 

  29. Kuno A, Ikehara Y, Tanaka Y, et al. A serum “sweet-doughnut” protein facilitates fibrosis evaluation and therapy assessment in patients with viral hepatitis. Sci Rep. 2013;3:1065.

    PubMed  PubMed Central  Google Scholar 

  30. Neuman MG, Cohen LB, Nanau RM. Hyaluronic acid as a non-invasive biomarker of liver fibrosis. Clin Biochem. 2016;49:302–15.

    CAS  PubMed  Google Scholar 

  31. Guéchot J, Laudat A, Loria A, et al. Diagnostic accuracy of hyaluronan and type III procollagen amino-terminal peptide serum assays as markers of liver fibrosis in chronic viral hepatitis C evaluated by ROC curve analysis. Clin Chem. 1996;42:558–63.

    PubMed  Google Scholar 

  32. Schanté CE, Zuber G, Herlin C, et al. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydr Polym. 2011;85:469–89.

    Google Scholar 

  33. Stickel F, Poeschl G, Schuppan D, et al. Serum hyaluronate correlates with histological progression in alcoholic liver disease. Eur J Gastroenterol Hepatol. 2003;15:945–50.

    CAS  PubMed  Google Scholar 

  34. Rosenberg WMC, Voelker M, Thiel R, et al. Serum markers detect the presence of liver fibrosis: a cohort study. Gastroenterology. 2014;127:1704–13.

    Google Scholar 

  35. Toda K, Kumagai N, Kaneko F, et al. Pentoxifylline prevents pig serum-induced rat liver fibrosis by inhibiting interleukin-6 production. J Gastroenterol Hepatol. 2009;24:860–5.

    CAS  PubMed  Google Scholar 

  36. Fontana RJ, Dienstag JL, Bonkovsky HL, et al. Serum fibrosis markers are associated with liver disease progression in non-responder patients with chronic hepatitis C. Gut. 2010;59:1401–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Arima Y, Kawabe N, Hashimoto S, et al. Reduction of liver stiffness by interferon treatment in the patients with chronic hepatitis C. Hepatol Res. 2010;40:383–92.

    CAS  PubMed  Google Scholar 

  38. Andersen ES, Moessner BK, Christensen PB, et al. Lower liver stiffness in patients with sustained virological response 4 years after treatment for chronic hepatitis C. Eur J Gastroenterol Hepatol. 2011;23:41–4.

    PubMed  Google Scholar 

  39. Park SH, Kim CH, Kim DJ, et al. Usefulness of multiple biomarkers for the prediction of significant fibrosis in chronic hepatitis B. J Clin Gastroenterol. 2011;45:361–5.

    CAS  PubMed  Google Scholar 

  40. Chen J, Liu C, Chen H, et al. Study on noninvasive laboratory tests for fibrosis in chronic HBV infection and their evaluation. J Clin Lab Anal. 2013;27:5–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Koo JH, Lee MH, Kim SS, et al. Changes in serum histologic surrogate markers and procollagen III N-terminal peptide as independent predictors of HBeAg loss in patients with chronic hepatitis B during entecavir therapy. Clin Biochem. 2012;45:31–6.

    CAS  PubMed  Google Scholar 

  42. Corpechot C, Carrat F, Poujol-Robert A, et al. Noninvasive elastography-based assessment of liver fibrosis progression and prognosis in primary biliary cirrhosis. Hepatology. 2012;56:198–208.

    PubMed  Google Scholar 

  43. Corpechot C, Gaouar F, El Naggar A, et al. Baseline values and changes in liver stiffness measured by transient elastography are associated with severity of fibrosis and outcomes of patients with primary sclerosing cholangitis. Gastroenterology. 2014;146:970–9.

    PubMed  Google Scholar 

  44. Alkhouri N, Carter–Kent C, Lopez R, et al. A combination of the pediatric NAFLD fibrosis index and enhanced liver fibrosis test identifies children with fibrosis. Clin Gastroenterol Hepatol. 2011;9:150–5.

    PubMed  Google Scholar 

  45. Tomita K, Teratani T, Yokoyama H, et al. Serum immunoglobulin a concentration is an independent predictor of liver fibrosis in nonalcoholic steatohepatitis before the cirrhotic stage. Dig Dis Sci. 2011;56:3648–54.

    CAS  PubMed  Google Scholar 

  46. Martinez-Hernandez A, Amenta PS. The hepatic extracellular matrix. I. Components and distribution in normal liver. Virchows Arch A Pathol Anat Histopathol. 1993;423:1–11.

    CAS  PubMed  Google Scholar 

  47. Kefalides NA, Borel JP. Structural macromolecules: laminins, entactin/nidogen, and proteoglycans (Perlecan, Agrin). Curr Top Membr. 2005;56:147–97.

    Google Scholar 

  48. Birk DE, Brückner P. Collagens, suprastructures, and collagen fibril assembly. In: The extracellular matrix: an overview. Berlin: Springer; 2011. p. 77–115.

    Google Scholar 

  49. Kalluri R. Angiogenesis: basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer. 2003;3:422.

    CAS  PubMed  Google Scholar 

  50. Wells RG. Cellular sources of extracellular matrix in hepatic fibrosis. Clin Liver Dis. 2008;12:759–68.

    PubMed  PubMed Central  Google Scholar 

  51. Mak KM, Mei R. Basement membrane type IV collagen and laminin: an overview of their biology and value as fibrosis biomarkers of liver disease. Anat Rec (Hoboken). 2017;300:1371–90.

    CAS  Google Scholar 

  52. Rojkind M, Ponce-Noyola P. The extracellular matrix of the liver. Coll Relat Res. 1982;2:151–75.

    CAS  PubMed  Google Scholar 

  53. Murawaki Y, Ikuta Y, Koda M, et al. Comparison of serum 7S fragment of type IV collagen and serum central triple-helix of type IV collagen for assessment of liver fibrosis in patients with chronic viral liver disease. J Hepatol. 1996;24:148–54.

    CAS  PubMed  Google Scholar 

  54. Murawaki Y, Ikuta Y, Nishimura Y, et al. Serum markers for connective tissue turnover in patients with chronic hepatitis B and chronic hepatitis C: a comparative analysis. J Hepatol. 1995;23:145–52.

    CAS  PubMed  Google Scholar 

  55. Shimamura T, Nakajima Y, Une Y, et al. Serum levels of the type IV collagen 7s domain in patients with chronic viral liver diseases. Int J Oncol. 1996;8:153–7.

    CAS  PubMed  Google Scholar 

  56. Niemela O, Risteli J, Blake JE, et al. Markers of fibrogenesis and basement membrane formation in alcoholic liver disease. Relation to severity, presence of hepatitis, and alcohol intake. Gastroenterology. 1990;98:1612–9.

    CAS  PubMed  Google Scholar 

  57. Hirayama C, Suzuki H, Takada A, et al. Serum type IV collagen in various liver diseases in comparison with serum 7S collagen, laminin, and type III procollagen peptide. J Gastroenterol. 1996;31:242–8.

    CAS  PubMed  Google Scholar 

  58. Yoneda M, Mawatari H, Fujita K, et al. Type IV collagen 7s domain is an independent clinical marker of the severity of fibrosis in patients with nonalcoholic steatohepatitis before the cirrhotic stage. J Gastroenterol. 2007;42:375–81.

    CAS  PubMed  Google Scholar 

  59. Kojima H, Hongo Y, Harada H, et al. Long-term histological prognosis and serum fibrosis markers in chronic hepatitis C patients treated with interferon. J Gastroenterol Hepatol. 2001;16:1015–21.

    CAS  PubMed  Google Scholar 

  60. Rosenberg WM, Voelker M, Thiel R, et al. Serum markers detect the presence of liver fibrosis: a cohort study. Gastroenterology. 2004;127:1704–13.

    PubMed  Google Scholar 

  61. Montalto G, Soresi M, Aragona F, et al. Procollagen III and laminin in chronic viral hepatopathies. Presse medicale (Paris, France: 1983). 1996;25:59–62.

    CAS  Google Scholar 

  62. Hayasaka A, Schuppan D, Ohnishi K, et al. Serum concentrations of the carboxy terminal cross-linking domain of procollagen type IV (NC1) and the aminoterminal propetide of procollagen type III (PIIIP) in chronic liver disease. J Hepatol. 1990;10:17–22.

    CAS  PubMed  Google Scholar 

  63. Tanwar S, Trembling PM, Guha IN, et al. Validation of terminal peptide of procollagen III for the detection and assessment of nonalcoholic steatohepatitis in patients with nonalcoholic fatty liver disease. Hepatology. 2013;57:103–11.

    CAS  PubMed  Google Scholar 

  64. Gluba A, Bielecka-Dabrowa A, Mikhailidis DP, et al. An update on biomarkers of heart failure in hypertensive patients. J Hypertens. 2012;30:1681–9.

    CAS  PubMed  Google Scholar 

  65. Nielsen MJ, Nedergaard AF, Sun S, et al. The neo-epitope specific PRO-C3 ELISA measures true formation of type III collagen associated with liver and muscle parameters. Am J Transl Res. 2013;5:303.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Nielsen MJ, Veidal SS, Karsdal MA, et al. Plasma Pro-C3 (N-terminal type III collagen propeptide) predicts fibrosis progression in patients with chronic hepatitis C. Liver Int. 2015;35:429–37.

    CAS  PubMed  Google Scholar 

  67. Daniels S, Nielsen M, Krag A, et al. Serum Pro-C3 combined with clinical parameters is superior to established serological fibrosis tests at identifying patients with advanced fibrosis among patients with non-alcoholic fatty liver disease. J Hepatol. 2017;66:S671.

    Google Scholar 

  68. Karsdal MA, Henriksen K, Nielsen MJ, et al. Fibrogenesis assessed by serological type III collagen formation identifies patients with progressive liver fibrosis and responders to a potential antifibrotic therapy. Am J Physiol Gastrointest Liver Physiol. 2016;311:G1009–17.

    PubMed  Google Scholar 

  69. Iacobelli S, Arno E, D’Orazio A, et al. Detection of antigens recognized by a novel monoclonal antibody in tissue and serum from patients with breast cancer. Cancer Res. 1986;46:3005–10.

    CAS  PubMed  Google Scholar 

  70. Koths K, Taylor E, Halenbeck R, et al. Cloning and characterization of a human Mac-2-binding protein, a new member of the superfamily defined by the macrophage scavenger receptor cysteine-rich domain. J Biol Chem. 1993;268:14245–9.

    CAS  PubMed  Google Scholar 

  71. Tinari N, Kuwabara I, Huflejt ME, et al. Glycoprotein 90K/MAC-2BP interacts with galectin-1 and mediates galectin-1-induced cell aggregation. Int J Cancer. 2001;91:167–72.

    CAS  PubMed  Google Scholar 

  72. Resnick D, Pearson A, Krieger M. The SRCR superfamily: a family reminiscent of the Ig superfamily. Trends Biochem Sci. 1994;19:5–8.

    CAS  PubMed  Google Scholar 

  73. Trahey M, Weissman IL. Cyclophilin C-associated protein: a normal secreted glycoprotein that down-modulates endotoxin and proinflammatory responses in vivo. Proc Natl Acad Sci U S A. 1999;96:3006–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ochieng J, Leite-Browning ML, Warfield P. Regulation of cellular adhesion to extracellular matrix proteins by galectin-3. Biochem Biophys Res Commun. 1998;246:788–91.

    CAS  PubMed  Google Scholar 

  75. Kamada Y, Ono M, Hyogo H, et al. A novel noninvasive diagnostic method for nonalcoholic steatohepatitis using two glycobiomarkers. Hepatology. 2015;62:1433–43.

    CAS  PubMed  Google Scholar 

  76. Haji-Ghassemi O, Gilbert M, Spence J, et al. Molecular basis for recognition of the cancer glycobiomarker, LacdiNAc (GalNAc[beta1-->4]GlcNAc), by Wisteria floribunda Agglutinin. J Biol Chem. 2016;291:24085–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kuno A, Sato T, Shimazaki H, et al. Reconstruction of a robust glycodiagnostic agent supported by multiple lectin-assisted glycan profiling. Proteomics Clin Appl. 2013;7:642–7.

    CAS  PubMed  Google Scholar 

  78. Yamasaki K, Tateyama M, Abiru S, et al. Elevated serum levels of Wisteria floribunda agglutinin-positive human Mac-2 binding protein predict the development of hepatocellular carcinoma in hepatitis C patients. Hepatology. 2014;60:1563–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Abe M, Miyake T, Kuno A, et al. Association between Wisteria floribunda agglutinin-positive Mac-2 binding protein and the fibrosis stage of non-alcoholic fatty liver disease. J Gastroenterol. 2015;50:776–84.

    CAS  PubMed  Google Scholar 

  80. Zou X, Zhu MY, Yu DM, et al. Serum WFA+ -M2BP levels for evaluation of early stages of liver fibrosis in patients with chronic hepatitis B virus infection. Liver Int. 2017;37:35–44.

    CAS  PubMed  Google Scholar 

  81. Nishikawa H, Enomoto H, Iwata Y, et al. Impact of serum Wisteria floribunda agglutinin positive Mac-2-binding protein and serum interferon-gamma-inducible protein-10 in primary biliary cirrhosis. Hepatol Res. 2016;46:575–83.

    CAS  PubMed  Google Scholar 

  82. Nishikawa H, Enomoto H, Iwata Y, et al. Clinical significance of serum Wisteria floribunda agglutinin positive Mac-2-binding protein level and high-sensitivity C-reactive protein concentration in autoimmune hepatitis. Hepatol Res. 2016;46:613–21.

    CAS  PubMed  Google Scholar 

  83. Sterling RK, Lissen E, Clumeck N, et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology. 2006;43:1317–25.

    CAS  Google Scholar 

  84. Imperiale TF, Said AT, Cummings OW, et al. Need for validation of clinical decision aids: use of the AST/ALT ratio in predicting cirrhosis in chronic hepatitis C. Am J Gastroenterol. 2000;95:2328–32.

    CAS  PubMed  Google Scholar 

  85. Wai CT, Greenson JK, Fontana RJ, et al. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology. 2003;38:518–26.

    Google Scholar 

  86. Bedossa P, Carrat F. Liver biopsy: the best, not the gold standard. J Hepatology. 2009;50:1–3.

    Google Scholar 

  87. Castera L, Pinzani M. Biopsy and non-invasive methods for the diagnosis of liver fibrosis: does it take two to tango? Gut. 2010;59(7):861–6. BMJ Publishing Group.

    PubMed  Google Scholar 

  88. Kennedy OJ, Parkes J, Tanwar S, et al. The enhanced liver fibrosis (ELF) panel: analyte stability under common sample storage conditions used in clinical practice. J Appl Lab Med. 2017;1:720–8.

    CAS  Google Scholar 

  89. Nobili V, Parkes J, Bottazzo G, et al. Performance of ELF serum markers in predicting fibrosis stage in pediatric non-alcoholic fatty liver disease. Gastroenterology. 2009;136:160–7.

    CAS  PubMed  Google Scholar 

  90. Parkes J, Roderick P, Harris S, et al. Enhanced liver fibrosis test can predict clinical outcomes in patients with chronic liver disease. Gut. 2010;59:1245–51.

    CAS  PubMed  Google Scholar 

  91. Sands CJ, Guha IN, Kyriakides M, et al. Metabolic phenotyping for enhanced mechanistic stratification of chronic hepatitis C-induced liver fibrosis. Am J Gastroenterol. 2015;110:159–69.

    CAS  PubMed  Google Scholar 

  92. Gumusay O, Ozenirler S, Atak A, et al. Diagnostic potential of serum direct markers and non-invasive fibrosis models in patients with chronic hepatitis B. Hepatol Res. 2013;43:228–37.

    CAS  PubMed  Google Scholar 

  93. Karlas T, Dietrich A, Peter V, et al. Evaluation of transient elastography, acoustic radiation force impulse imaging (ARFI), and enhanced liver function (ELF) score for detection of fibrosis in morbidly obese patients. PLoS One. 2015;10:e0141649.

    PubMed  PubMed Central  Google Scholar 

  94. Fagan KJ, Pretorius CJ, Horsfall LU, et al. ELF score >/=9.8 indicates advanced hepatic fibrosis and is influenced by age, steatosis and histological activity. Liver Int. 2015;35:1673–81.

    PubMed  Google Scholar 

  95. Lichtinghagen R, Pietsch D, Bantel H, et al. The enhanced liver fibrosis (ELF) score: normal values, influence factors and proposed cut-off values. J Hepatol. 2013;59:236–42.

    PubMed  Google Scholar 

  96. Williams AL, Hoofnagle JH. Ratio of serum aspartate to alanine aminotransferase in chronic hepatitis relationship to cirrhosis. Gastroenterology. 1988;95:734–9.

    CAS  PubMed  Google Scholar 

  97. Lurie Y, Webb M, Cytter-Kuint R, et al. Non-invasive diagnosis of liver fibrosis and cirrhosis. World J Gastroenterol. 2015;21:11567.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhu X, Wang L-C, Chen E-Q, et al. Prospective evaluation of FibroScan for the diagnosis of hepatic fibrosis compared with liver biopsy/AST platelet ratio index and FIB-4 in patients with chronic HBV infection. Dig Dis Sci. 2001;56:2742–9.

    Google Scholar 

  99. Shin W, Park S, Jang M, et al. Aspartate aminotransferase to platelet ratio index (APRI) can predict liver fibrosis in chronic hepatitis B. Dig Liver Dis. 2008;40:267–74.

    CAS  PubMed  Google Scholar 

  100. Naveau S, Gaudé G, Asnacios A, et al. Diagnostic and prognostic values of noninvasive biomarkers of fibrosis in patients with alcoholic liver disease. Hepatology. 2009;49:97–105.

    PubMed  Google Scholar 

  101. Sumida Y, Yoneda M, Hyogo H, et al. Validation of the FIB4 index in a Japanese nonalcoholic fatty liver disease population. BMC Gastroenterol. 2012;12:2.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Biggins SW, Rodriguez HJ, Bacchetti P, et al. Serum sodium predicts mortality in patients listed for liver transplantation. Hepatology. 2005;41:32–9.

    CAS  PubMed  Google Scholar 

  103. Kim WR, Biggins SW, Kremers WK, et al. Hyponatremia and mortality among patients on the liver-transplant waiting list. N Engl J Med. 2008;359:1018–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Tateishi R, Yoshida H, Matsuyama Y, et al. Diagnostic accuracy of tumor markers for hepatocellular carcinoma: a systematic review. Hepatol Int. 2018;2:17–30.

    Google Scholar 

  105. Kudo M, Izumi N, Kokudo N, et al. Management of hepatocellular carcinoma in Japan: Consensus-Based Clinical Practice Guidelines proposed by the Japan Society of Hepatology (JSH) 2010 updated version. Dig Dis. 2011;29:339–64.

    PubMed  Google Scholar 

  106. Omata M, Cheng AL, Kokudo N, et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. Hepatol Int. 2017;11:317–70.

    PubMed  PubMed Central  Google Scholar 

  107. de Lope CR, Tremosini S, Forner A, et al. Management of HCC. J Hepatol. 2012;56(Suppl 1):S75–87.

    PubMed  Google Scholar 

  108. Heimbach JK, Kulik LM, Finn RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology. 2018;67:358–80.

    PubMed  Google Scholar 

  109. Kanwal F, Hoang T, Kramer JR, et al. Increasing prevalence of HCC and cirrhosis in patients with chronic hepatitis C virus infection. Gastroenterology. 2011;140:1182–1188.e1.

    PubMed  Google Scholar 

  110. Mittal S, Sada YH, El-Serag HB, et al. Temporal trends of nonalcoholic fatty liver disease-related hepatocellular carcinoma in the veteran affairs population. Clin Gastroenterol Hepatol. 2015;13:594–601.e1.

    PubMed  Google Scholar 

  111. Ertle J, Dechene A, Sowa JP, et al. Non-alcoholic fatty liver disease progresses to hepatocellular carcinoma in the absence of apparent cirrhosis. Int J Cancer. 2011;128:2436–43.

    CAS  PubMed  Google Scholar 

  112. Tokushige K, Hyogo H, Nakajima T, et al. Hepatocellular carcinoma in Japanese patients with nonalcoholic fatty liver disease and alcoholic liver disease: multicenter survey. J Gastroenterol. 2016;51:586–96.

    CAS  PubMed  Google Scholar 

  113. Yasui K, Hashimoto E, Komorizono Y, et al. Characteristics of patients with nonalcoholic steatohepatitis who develop hepatocellular carcinoma. Clin Gastroenterol Hepatol. 2011;9:428–33.

    PubMed  Google Scholar 

  114. IuS T. Detection of embryo-specific alpha-globulin in the blood serum of a patient with primary liver cancer. Vopr Med Khim. 1964;10:90–1.

    Google Scholar 

  115. Kew M. Alpha-fetoprotein. In: Modern trends in gastroenterology, vol. 5; 1975. p. 91.

    Google Scholar 

  116. Koteish A, Thuluvath PJ. Screening for hepatocellular carcinoma. J Vasc Interv Radiol. 2002;13:S185–90.

    PubMed  Google Scholar 

  117. McLeod JF, Cooke NE. The vitamin D-binding protein, alpha-fetoprotein, albumin multigene family: detection of transcripts in multiple tissues. J Biol Chem. 1989;264:21760–9.

    CAS  PubMed  Google Scholar 

  118. Ruoslahti E, Seppala M. Studies of carcino-fetal proteins. 3. Development of a radioimmunoassay for -fetoprotein. Demonstration of -fetoprotein in serum of healthy human adults. Int J Cancer. 1971;8:374–833.

    CAS  PubMed  Google Scholar 

  119. Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell. 2006;126:855–67.

    CAS  PubMed  Google Scholar 

  120. Callewaert N, Van Vlierberghe H, Van Hecke A, et al. Noninvasive diagnosis of liver cirrhosis using DNA sequencer-based total serum protein glycomics. Nat Med. 2004;10:429–34.

    CAS  PubMed  Google Scholar 

  121. Ito K, Kuno A, Ikehara Y, et al. LecT-hepa, a glyco-marker derived from multiple lectins, as a predictor of liver fibrosis in chronic hepatitis C patients. Hepatology. 2012;56:1448–56.

    CAS  PubMed  Google Scholar 

  122. Miyoshi E, Moriwaki K, Nakagawa T. Biological function of fucosylation in cancer biology. J Biochem. 2008;143:725–9.

    CAS  PubMed  Google Scholar 

  123. Hashimoto S, Asao T, Takahashi J, et al. alpha1-acid glycoprotein fucosylation as a marker of carcinoma progression and prognosis. Cancer. 2004;101:2825–36.

    CAS  PubMed  Google Scholar 

  124. Wang M, Long RE, Comunale MA, et al. Novel fucosylated biomarkers for the early detection of hepatocellular carcinoma. Cancer Epidemiol Biomark Prev. 2009;18:1914–21.

    CAS  Google Scholar 

  125. Okuyama N, Ide Y, Nakano M, et al. Fucosylated haptoglobin is a novel marker for pancreatic cancer: a detailed analysis of the oligosaccharide structure and a possible mechanism for fucosylation. Int J Cancer. 2006;118:2803–8.

    CAS  PubMed  Google Scholar 

  126. Noda K, Miyoshi E, Gu J, et al. Relationship between elevated FX expression and increased production of GDP-L-fucose, a common donor substrate for fucosylation in human hepatocellular carcinoma and hepatoma cell lines. Cancer Res. 2003;63:6282–9.

    CAS  PubMed  Google Scholar 

  127. Breborowicz J, Mackiewicz A, Breborowicz D. Microheterogeneity of alpha-fetoprotein in patient serum as demonstrated by lectin affino-electrophoresis. Scand J Immunol. 1981;14:15–20.

    CAS  PubMed  Google Scholar 

  128. Taketa K, Izumi M, Ichikawa E. Distinct molecular species of human alpha-fetoprotein due to differential affinities to lectins. Ann N Y Acad Sci. 1983;417:61–8.

    CAS  PubMed  Google Scholar 

  129. Aoyagi Y. Carbohydrate-based measurements on alpha-fetoprotein in the early diagnosis of hepatocellular carcinoma. Glycoconj J. 1995;12:194–9.

    CAS  PubMed  Google Scholar 

  130. Sato Y, Nakata K, Kato Y, et al. Early recognition of hepatocellular carcinoma based on altered profiles of alpha-fetoprotein. N Engl J Med. 1993;328:1802–6.

    CAS  PubMed  Google Scholar 

  131. Taketa K, Endo Y, Sekiya C, et al. A collaborative study for the evaluation of lectin-reactive alpha-fetoproteins in early detection of hepatocellular carcinoma. Cancer Res. 1993;53:5419–23.

    CAS  PubMed  Google Scholar 

  132. Yamashita F, Tanaka M, Satomura S, et al. Prognostic significance of Lens culinaris agglutinin A-reactive alpha-fetoprotein in small hepatocellular carcinomas. Gastroenterology. 1996;111:996–1001.

    CAS  PubMed  Google Scholar 

  133. Kagebayashi C, Yamaguchi I, Akinaga A, et al. Automated immunoassay system for AFP-L3% using on-chip electrokinetic reaction and separation by affinity electrophoresis. Anal Biochem. 2009;388:306–11.

    CAS  PubMed  Google Scholar 

  134. Suzuki M, Shiraha H, Fujikawa T, et al. Des-gamma-carboxy prothrombin is a potential autologous growth factor for hepatocellular carcinoma. J Biol Chem. 2005;280:6409–15.

    CAS  PubMed  Google Scholar 

  135. Liebman HA, Furie BC, Tong MJ, et al. Des-γ-carboxy (abnormal) prothrombin as a serum marker of primary hepatocellular carcinoma. N Engl J Med. 1984;310:1427–31.

    CAS  PubMed  Google Scholar 

  136. Koike Y, Shiratori Y, Sato S, et al. Des-γ-carboxy prothrombin as a useful predisposing factor for the development of portal venous invasion in patients with hepatocellular carcinoma. Cancer. 2001;91:561–9.

    CAS  PubMed  Google Scholar 

  137. Hagiwara S, Kudo M, Kawasaki T, et al. Prognostic factors for portal venous invasion in patients with hepatocellular carcinoma. J Gastroenterol. 2006;41:1214–9.

    PubMed  Google Scholar 

  138. Suehiro T, Sugimachi K, Matsumata T, et al. Protein induced by vitamin K absence or antagonist II as a prognostic marker in hepatocellular carcinoma. Comparison with alpha-fetoprotein. Cancer. 1994;73:2464–71.

    CAS  PubMed  Google Scholar 

  139. Imamura H, Matsuyama Y, Miyagawa Y, et al. Prognostic significance of anatomical resection and des-γ-carboxy prothrombin in patients with hepatocellular carcinoma. Br J Surg. 1999;86:1032–8.

    CAS  PubMed  Google Scholar 

  140. Toyoda H, Kumada T, Kiriyama S, et al. Prognostic significance of simultaneous measurement of three tumor markers in patients with hepatocellular carcinoma. Clin Gastroenterol Hepatol. 2006;4:111–7.

    CAS  PubMed  Google Scholar 

  141. Fujikawa T, Shiraha H, Ueda N, et al. Des-gamma-carboxyl prothrombin-promoted vascular endothelial cell proliferation and migration. J Biol Chem. 2007;282:8741–8.

    CAS  PubMed  Google Scholar 

  142. Filmus J, Selleck SB. Glypicans: proteoglycans with a surprise. J Clin Invest. 2001;108:497–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Filmus J, Church JG, Buick RN. Isolation of a cDNA corresponding to a developmentally regulated transcript in rat intestine. Mol Cell Biol. 1988;8:4243–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Li M, Choo B, Wong ZM, et al. Expression of OCI-5/glypican 3 during intestinal morphogenesis: regulation by cell shape in intestinal epithelial cells. Exp Cell Res. 1997;235:3–12.

    CAS  PubMed  Google Scholar 

  145. Farooq M, Hwang SY, Park MK, et al. Blocking endogenous glypican-3 expression releases Hep 3B cells from G1 arrest. Mol Cells. 2003;15:356–60.

    CAS  PubMed  Google Scholar 

  146. Capurro M, Wanless IR, Sherman M, et al. Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology. 2003;125:89–97.

    CAS  PubMed  Google Scholar 

  147. Zhu Z, Friess H, Wang L, et al. Enhanced glypican-3 expression differentiates the majority of hepatocellular carcinomas from benign hepatic disorders. Gut. 2001;48:558–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Jia X, Liu J, Gao Y, et al. Diagnosis accuracy of serum glypican-3 in patients with hepatocellular carcinoma: a systematic review with meta-analysis. Arch Med Res. 2014;45:580–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Sumida MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sumida, Y., Kamada, Y., Iwai, M., Kwo, P.Y., Yoneda, M. (2019). Laboratory Tests in Liver Diseases. In: Hashimoto, E., Kwo, P., Suriawinata, A., Tsui, W., Iwai, M. (eds) Diagnosis of Liver Disease. Springer, Singapore. https://doi.org/10.1007/978-981-13-6806-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6806-6_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6805-9

  • Online ISBN: 978-981-13-6806-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics