Skip to main content

Comparison of Two Design Methods of Triboelectric Nanogenerator for Building Efficient Energy Harvesting and Storage

  • Conference paper
  • First Online:
Applications of Computing, Automation and Wireless Systems in Electrical Engineering

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 553))

  • 1643 Accesses

Abstract

Triboelectric nanogenerators are used to convert all kinds of mechanical vibrations such as human motions, vibrations from industrial machinery, automobiles, etc. into useful electrical energy. In this paper, we compared two design methods of efficient energy harvesting systems in vertical contact-separation and lateral-sliding mode with respect to their implementation and experimental results. We have demonstrated the charging behavior of two modes of TENG using polytetrafluoroethylene (PTFE), aluminium, and copper used as triboelectric materials. We have observed a maximum open circuit voltage of 4.9 V across 4.7 µF capacitor, maximum energy of 270 µJ/cm−3 across 100 µF capacitor, and maximum output power of 0.9 µW across 4.7 µF load capacitor with 7.8 MΩ load resistor in vertical contact-separation mode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang ZL, Lin L, Chen J, Niu S, Zi Y (2016) Triboelectric nanogenerators. Springer International Publishing, Switzerland

    Chapter  Google Scholar 

  2. Wang ZL, Chen J, Lin L (2015) Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ Sci 8:2250–2282

    Article  Google Scholar 

  3. Lee JH, Kim J, Kim TY, Hossain MSA, Kim SW, Kim JH (2016) All-in-one energy harvesting and storage devices. J Mater Chem A 4:7983–7999

    Article  Google Scholar 

  4. Azad P, Singh VP, Vaish R (2018) Candle soot-driven performance enhancement in pyroelectric energy conversion. J Electron Mater. 47(8):4721–4730. ISSN 0361-5235. https://doi.org/10.1007/s11664-018-6357-8

    Article  Google Scholar 

  5. Sharma M, Singh VP, Singh S, Azad P, Ilahi B, Madhar NA (2018) Porous Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics for pyroelectric applications. J Electron Mater. 47(8):4882–4891. ISSN 0361-5235. https://doi.org/10.1007/s11664-018-6375-6

    Article  Google Scholar 

  6. Azad P, Vaish R (2017) Portable triboelectric based wind energy harvester for low power applications. Eur Phys J Plus 132:253

    Article  Google Scholar 

  7. Khushboo, Azad P (2016) Triboelectric nanogenerator based on vertical contact separation mode for energy harvesting. In: IEEE, ICCCA 2017. IEEE, India, pp 1499–1502

    Google Scholar 

  8. Khushboo, Azad P Design and implementation of conductor to dielectric lateral sliding TENG mode for low power electronic. In: Springer, accepted in signals, machines and automation (SIGMA 2018). Applications of Artificial Intelligence Techniques in Engineering. Advances in Intelligent Systems and Computing, vol 698. Springer, Singapore, pp 167–174. https://doi.org/10.1007/978-981-13-1819-1_17

    Google Scholar 

  9. Mao Y, Genga D, Liang E, Wang X (2015) Single-electrode triboelectric nanogenerator for scavenging friction energy from rolling tires. Nano Energy 15:227–234

    Article  Google Scholar 

  10. Vaish M, Sharma M, Vaish R, Chauhan V (2015) Electrical energy generation from hot/cold air using pyroelectric ceramics. Integr Ferroelectr J Integr Ferroelectr 167(1):90–97 (Taylor & Francis)

    Article  Google Scholar 

  11. Wang ZL (2014) Triboelectric nanogenerators as new energy technology and self-powered sensors—principles, problems and perspectives. Energy Environ Sci Faraday Discuss 176:447–458

    Article  Google Scholar 

  12. Zhu G, Chen J, Liu Y, Bai P, Zhou YS, Jing Q, Pan C, Wang ZL (2013) Linear-grating triboelectric generator based on sliding electrification. ACS Publ Nano Lett 13:2282–2289

    Article  Google Scholar 

  13. Zil Y, Wang J, Wang S, Li S, Wen Z, Guo H, Wang ZL (2016) Effective energy storage from a triboelectric nanogenerator. Nat Commun 7

    Google Scholar 

  14. Fan FR, Tian ZQ, Wang ZL (2012) Flexible triboelectric generator. Nano Energy 1:328–334 (Elsevier Ltd.)

    Article  Google Scholar 

  15. Niu S, Liu Y, Zhou YS, Wang S, Lin L, Wang ZL (2015) Optimization of triboelectric nanogenerator charging systems for efficient energy harvesting and storage. IEEE Trans Electron Dev 62(2):641–647

    Article  Google Scholar 

  16. Proto A, Penhaker M, Conforto S, Schmid M (2017) Review nanogenerators for human body energy harvesting. Trends Biotechnol 35(7):610–624 (Elsevier Ltd.)

    Article  Google Scholar 

  17. Shaikh FK, Zeadally S (2016) Energy harvesting in wireless sensor networks: a comprehensive review. Renew Sustain Energy Rev 55:1041–1054 (Elsevier Ltd.)

    Article  Google Scholar 

  18. Yang W, Chen J, Zhu G, Yang J, Bai P, Su YJ, Jing QS, Wang ZL (2013) Harvesting energy from natural vibration of a human walking. ACS Nano 7(12):11317–11324. https://doi.org/10.1021/nn405175z

    Article  Google Scholar 

  19. Vaish M, Sharma M, Vaish R, Chauhan VS (2015) Experimental study on waste heat energy harvesting using lead zirconate titanate (PZT-5H) pyroelectric ceramics. Wiley Energy Technol 3:768–773

    Article  Google Scholar 

  20. Zhong J, Zhong Q, Fan F, Zhang Y, Wang S, Hu B, Wang ZL, Zhou J (2013) Finger typing driven triboelectric nanogenerators and its use for instantaneously lighting up LEDS. Nano Energy. 2(4):491–497. https://doi.org/10.1016/j.nanoen.2012.11.015

    Article  Google Scholar 

  21. Xia X, Lie G, Chen L, Li W, Xi Y, Shi J, Hu C (2015) Foldable and portable triboelectric-electromagnetic generator for scavenging motion energy and as a sensitive gas flow sensor for detecting breath personality. Nanotechnology 26. https://doi.org/10.1088/0957-4484/26/47/475402

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khushboo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khushboo, Azad, P. (2019). Comparison of Two Design Methods of Triboelectric Nanogenerator for Building Efficient Energy Harvesting and Storage. In: Mishra, S., Sood, Y., Tomar, A. (eds) Applications of Computing, Automation and Wireless Systems in Electrical Engineering. Lecture Notes in Electrical Engineering, vol 553. Springer, Singapore. https://doi.org/10.1007/978-981-13-6772-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6772-4_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6771-7

  • Online ISBN: 978-981-13-6772-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics