Skip to main content

Decentralized Differential Evolutionary Algorithm for Large-Scale Networked Systems

  • Conference paper
  • First Online:
Book cover Advancements in Smart City and Intelligent Building (ICSCIB 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 890 ))

Included in the following conference series:

Abstract

The optimization of a complex system with multiple subsystems is a tough problem. In this paper, a Decentralized differential evolutionary algorithm (DDEA) is proposed. The simulations for both DDEA and centralized DE on three benchmark functions are carried out. The numerical results show that DDEA is efficient to solve decentralized optimization problems. On these problems, the proposed DDEA outperforms centralized DE in convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Inalhan, G., Stipanovic, D.M., Tomlin, C.J.: Decentralized optimization, with application to multiple aircraft coordination. In: Decision and Control, 2002, Proceedings of the 41st IEEE Conference, vol. 1, pp. 1147–1155. IEEE (2002)

    Google Scholar 

  2. Zhuang, L., Chen, X., Guan, X.: A decentralized ordinal optimization for energy saving of an HVAC system. In: American Control Conference (ACC), 2016, pp. 611–616. IEEE (2016)

    Google Scholar 

  3. Shi, W., Ling, Q., Wu, G., Yin, W.: Extra: an exact first-order algorithm for decentralized consensus optimization. SIAM J. Optim. 25(2), 944–966 (2015)

    Article  MathSciNet  Google Scholar 

  4. Johansson, B.: On distributed optimization in networked systems. Ph.D. Telecommunication (2008)

    Google Scholar 

  5. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

    Article  Google Scholar 

  6. Price, K., Price, K.: Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Kluwer Academic Publishers (1997)

    Google Scholar 

  7. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999)

    Article  Google Scholar 

  8. Rosenbrock, H.H.: An automatic method for finding the greatest or least value of a function. Comput. J. 3(3), 175–184 (1960); Floudas, C.A., Pardalos, P.M.: A Collection of Test Problems for Constrained Global Optimization Algorithms. Springer Berlin Heidelberg (1990)

    Google Scholar 

  9. Fiacco, A.V., McCormick, G.P.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques, vol. 4. Siam (1990)

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Project of China (No. 2017YFC0704100 entitled New generation intelligent building platform techniques, and 2016YFB0901900), the National Natural Science Foundation of China (No. 61425027), the 111 International Collaboration Program of China under Grant B06002, and Special fund of Suzhou-Tsinghua Innovation Leading Action (Project Number: 2016SZ0202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Chen .

Editor information

Editors and Affiliations

Appendix

Appendix

In this appendix, the three benchmark problems are listed, followed by the corresponding decentralized problems on subsystems.

g01

$$ \mathop {\text{minimize}}\limits_{{{\mathbf{x}} \in {\mathbb{R}}^{10} }} f\left( {\mathbf{x}} \right) = 10d + \mathop \sum \limits_{i = 1}^{d} x_{i}^{2} - 10{ \cos }\left( {2\pi x_{i} } \right) $$
(13)

where \( x_{i} \in \left[ { - 5.12,5.12} \right] \). \( {\mathbf{x}}^{*} = 0 \) and \( f\left( {{\mathbf{x}}^{*} } \right) = 0 \).

The problem of \( i{\text{th}} \) subsystem is

$$ \mathop {\text{minimize}}\limits_{{x_{i} \in {\mathbb{R}}}} f(x_{i} |x_{i + 1} ) = 10 + x_{i}^{2} - 10{ \cos }\left( {2\pi x_{i + 1} } \right) $$
(14)

where \( i = 1,2, \ldots ,10 \), and \( x_{11} = x_{1} \).

g02

The problem of \( i{\text{th}} \) subsystem is

$$ \mathop {\text{minimize}}\limits_{{{\mathbf{x}} \in {\mathbb{R}}^{20} }} f\left( {\mathbf{x}} \right) = \mathop \sum \limits_{i = 1}^{d - 1} 100 (x_{i + 1} - x_{i}^{2} )^{2} + (x_{i} - 1)^{2} $$
(15)

where \( x_{i} \in \left[ { - 2.048,2.048} \right] \), \( x_{i}^{ *} = 1,\forall i \) and \( f\left( {{\mathbf{x}}^{ *} } \right) = 0 \).

The problem of \( i{\text{th}} \) subsystem is

$$ \begin{array}{*{20}r} \hfill {\mathop {\text{minimize}}\limits_{{x_{i} \in {\mathbb{R}}}} f(x_{i} |x_{i + 1} ) = 100(x_{i + 1} - x_{i}^{2} )^{2} + (x_{i} - 1)^{2} } \\ \end{array} $$
(16)

where i = 1,2, …, 19.

g03

$$ \begin{array}{*{20}c} {\mathop {\text{minimize}}\limits_{{{\mathbf{x}} \in {\mathbb{R}}^{13} }} \quad f\left( {\mathbf{x}} \right) = 5\mathop \sum \limits_{i = 1}^{4} x_{i} - \mathop \sum \limits_{i = 1}^{4} x_{i}^{2} - \mathop \sum \limits_{i = 5}^{13} x_{i} } \\ {subject\,to\quad 2x_{1} + 2x_{2} + x_{10} + x_{11} - 10 \le 0} \\ {\quad \quad \quad \quad \quad 2x_{1} + 2x_{3} + x_{10} + x_{12} - 10 \le 0} \\ {\quad \quad \quad \quad \quad 2x_{2} + 2x_{3} + x_{11} + x_{12} - 10 \le 0} \\ {\quad \quad \quad \quad \quad - 8x_{1} + x_{10} \le 0} \\ {\quad \quad \quad \quad \quad - 8x_{2} + x_{11} \le 0} \\ {\quad \quad \quad \quad \quad - 8x_{3} + x_{12} \le 0} \\ {\quad \quad \quad \quad - 2x_{4} - x_{5} + x_{10} \le 0} \\ {\quad \quad \quad \quad - 2x_{6} - x_{7} + x_{11} \le 0} \\ {\quad \quad \quad \quad - 2x_{8} - x_{9} + x_{12} \le 0} \\ \end{array} $$
(17)

where \( 0 \le x_{i} \le 1\left( {i = 1, \ldots ,9} \right) \), \( 0 \le x_{i} \le 100\left( {i = 10,11,12} \right) \), and \( 0 \le x_{13} \le 1 \). \( {\mathbf{x}}^{ *} = \left( {1,1,1,1,1,1,1,1,1,3,3,3,1} \right) \) and \( f\left( {{\mathbf{x}}^{ *} } \right) = - 15 \).

For this problem, 13 subsystems have different forms of problems. For example, the problem of the first subsystem is

$$ \begin{array}{*{20}c} {\mathop {\text{minimize}}\limits_{{x_{1} \in {\mathbb{R}}}} } & {f\left( {x_{1} } \right) = 5x_{1} - x_{1}^{2} } \\ {subject\,to} & {g_{1} (x_{1} |x_{2} ,x_{10} ,x_{11} ) = 2x_{1} + 2x_{2} + x_{10} + x_{11} - 10 \le 0} \\ {} & {g_{2} (x_{1} |x_{3} ,x_{10} ,x_{12} ) = 2x_{1} + 2x_{3} + x_{10} + x_{12} - 10 \le 0} \\ {} & {g_{3} (x_{1} |x_{10} ) = - 8x_{1} + x_{10} \le 0} \\ \end{array} $$
(18)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, G., Chen, X., Zhao, Q. (2019). Decentralized Differential Evolutionary Algorithm for Large-Scale Networked Systems. In: Fang, Q., Zhu, Q., Qiao, F. (eds) Advancements in Smart City and Intelligent Building. ICSCIB 2018. Advances in Intelligent Systems and Computing, vol 890 . Springer, Singapore. https://doi.org/10.1007/978-981-13-6733-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6733-5_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6732-8

  • Online ISBN: 978-981-13-6733-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics