Retinal Blood Vessels Extraction of Challenging Images

  • Toufique Ahmed SoomroEmail author
  • Junbin Gao
  • Zheng Lihong
  • Ahmed J. Afifi
  • Shafiullah Soomro
  • Manoranjan Paul
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 996)


Retinal fundus examination is necessary for the early diagnosis of eye disease, especially diabetic retinopathy. Population screening often results in poor quality retinal images that complicate the automated diagnosis of retinal features, such as precise segmentation of blood vessels, microaneurysms, cotton stains, and hard exudates. Fluorescein fundus angiogram (FFA) has solved some problems, but it is invasive and has side effects. In this research work, we proposed a method of image enhancement based on contrast-sensitive steps as a valuable aid for the automatic segmentation of pathological (unhealthy) images. Experimental results based on the Digital retinal images for vessel extraction (DRIVE) and STructured analysis of the retina (STARE) databases showed that the proposed image enhancement method improved the performance over other existing methods, from 92% to 95% in accuracy and from 71% to 75% in sensitivity. This significant improvement in the contrast of retinal background images of retinal color has the potential to provide better vessel images for observing ocular diseases.


Retinal color fundus images Enhancement method Segmentation of vessels 


  1. 1.
    Al-Diri, B., Hunter, A., Steel, D.: An active contour model for segmenting and measuring retinal vessels. IEEE Trans. Med. Imaging 28(9), 1488–1497 (2009)CrossRefGoogle Scholar
  2. 2.
    Cuadros, J., Martin, C.: Diabetic retinopathy screening practice guide. In: Yogesan, K., Goldschmidt, L., Cuadros, J. (eds.) Digital Teleretinal Screening, pp. 11–30. Springer, Heidelberg (2012). Scholar
  3. 3.
    Faust, O., Acharya, U.R., Ng, E.Y.K., Ng, K.H., Suri, J.S.: Algorithms for the automated detection of diabetic retinopathy using digital fundus images: a review. J. Med. Syst. 36(1), 145–157 (2012)CrossRefGoogle Scholar
  4. 4.
    Gilchrist, J.: Computer processing of ocular photographs-a review. Ophthalmic Physiol. Opt. 7, 379–386 (1987)Google Scholar
  5. 5.
    Gottschlich, C., Schonlieb, C.B.: Oriented diffusion filtering for enhancing low-quality fingerprint images. IET Biom. 1, 105–113 (2012)CrossRefGoogle Scholar
  6. 6.
    Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imaging 35(11), 2369–2380 (2016)CrossRefGoogle Scholar
  7. 7.
    Lupaşcu, C.A., Tegolo, D., Trucco, E.: FABC: retinal vessel segmentation using AdaBoost. IEEE Trans. Inf. Technol. Biomed. 14(5), 1267–1274 (2010)CrossRefGoogle Scholar
  8. 8.
    Martinez-Perez, M.E., Hughes, A.D., Thom, S.A.: Segmentation of blood vessels from red-free and fluorescein retinal images. J. Med. Image Anal. 11(1), 47–61 (2007)CrossRefGoogle Scholar
  9. 9.
    Mendonca, A.M., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imaging 25, 1200–1213 (2006)CrossRefGoogle Scholar
  10. 10.
    Menotti, D., de Albuquerque Araújo, A., Pappa, G.L., Najman, L., Facon. J.: Contrast enhancement in digital imaging using histogram equalization. In: Computer Science Universite Paris Est Universidade federal de Minas Gerais (Bresil), vol. 1, pp. 1–10 (2008)Google Scholar
  11. 11.
    Nguyen, U.T., Bhuiyan, A., Park, L.A., Ramamohanarao, K.: An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recognit. 46, 703–715 (2013)CrossRefGoogle Scholar
  12. 12.
    Palomera-Perez, M.A., Martinez-Perez, M.E., Benitez-Perez, H., Ortega-Arjona, J.L.: Parallel multiscale feature extraction and region growing: application in retinal blood vessel detection. IEEE Trans. Inf. Technol. Biomed. 14(2), 500–506 (2010)CrossRefGoogle Scholar
  13. 13.
    Shen, Y., Shu-zhen, C., Bing, Z.: An improved doublethreshold method based on gradient histogram. Wuhan Univ. J. Nat. Sci. 9(4), 473–476 (2004)CrossRefGoogle Scholar
  14. 14.
    Soares, J.V.B., Leandro, J.J.G., Cesar, R.M., Jelinek, J.H.F., Cree, M.J.: Retinal vessel segmentation using the 2D gabor wavelet and supervised classification. IEEE Trans. Med. Imaging 25(9), 1214–1222 (2006)CrossRefGoogle Scholar
  15. 15.
    Soomro, T.A., Khan, T.M., Khan, M.A.U., Gao, J., Paul, M., Zheng, L.: Impact of ICA-based image enhancement technique on retinal blood vessels segmentation. IEEE Access 6, 3524–3538 (2018)CrossRefGoogle Scholar
  16. 16.
    Soomro, T.A., Gao, J.: Non-invasive contrast normalisation and denosing technique for the retinal fundus image. Ann. Data Sci. 1, 1–15 (2016)Google Scholar
  17. 17.
    Soomro, T.A., Gao, J., Khan, M.A.U., Khan, T.M., Paul., M.: Role of image contrast enhancement technique for ophthalmologist as diagnostic tool for diabetic retinopathy. In: International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1–8. November 2016.
  18. 18.
    Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23, 501–509 (2004)CrossRefGoogle Scholar
  19. 19.
    You, X., Peng, Q., Yuan, Y., Cheung, Y.-M., Lei, J.: Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recognit. 44, 10–11 (2011)Google Scholar
  20. 20.
    Yannuzzi, L.A., et al.: Fluorescein angiography complication survey. Ophthalmology 93(5), 611–617 (1986)CrossRefGoogle Scholar
  21. 21.
    Yin, X., Ng, B.W.H., He, J., Zhang, Y., Abbott, D.: Accurate image analysis of the retina using hessian matrix and binarisation of thresholded entropy with application of texture mapping. PLOS ONE 9(4), 1–17 (2014)Google Scholar
  22. 22.
    Zhao, Y., Rada, L., Chen, K., Harding, S.P., Zheng, Y.: Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans. Med. Imaging 34(9), 1797–1807 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Toufique Ahmed Soomro
    • 1
    Email author
  • Junbin Gao
    • 2
  • Zheng Lihong
    • 1
  • Ahmed J. Afifi
    • 3
  • Shafiullah Soomro
    • 4
  • Manoranjan Paul
    • 1
  1. 1.School of Computing and MathematicsCharles Sturt UniversityBathurstAustralia
  2. 2.The Business SchoolThe University of SydneySydneyAustralia
  3. 3.Computer Vision and Remote SensingTechnische Universität BerlinBerlinGermany
  4. 4.Department of Computer Science and EngineeringChung-Ang UniversitySeoulSouth Korea

Personalised recommendations