Advertisement

Interpreting Intermittent Bugs in Mozilla Applications Using Change Angle

  • David Tse Jung HuangEmail author
  • Yun Sing Koh
  • Gillian Dobbie
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 996)

Abstract

Learning in evolving environments involves learning from data where the statistical characteristics can change over time. Current change detection algorithms that are used online for data streams detect whether a change has occurred in the data but there is always a detection delay. None of the existing online techniques can accurately pin-point the exact location of when the change starts to occur, which can be critical. We present a novel method Change Angle and we show, for the first time, how to pin-point online the location at which change starts to occur. We apply our Change Angle method in the application area of software revision control using Mozilla data, where it is important to detect not only the presence of change but also to pin-point accurately the location of when change starts to occur.

Keywords

Data streams Change detection Software repository 

Notes

Acknowledgment

We thank all Mozilla engineers that were involved in the development of this research project especially Kyle Lahnakoski, Joel Maher, and Jonathan Griffin for helping us acquire access to the relevant data and validate the work.

References

  1. 1.
    Baena-Garcıa, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavaldà, R., Morales-Bueno, R.: Early drift detection method. In: Proceedings of the 4th International Workshop on Knowledge Discovery from Data Streams, pp. 77–86 (2006)Google Scholar
  2. 2.
    Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the 7th SIAM International Conference on Data Mining (SDM), pp. 443–448 (2007)Google Scholar
  3. 3.
    Bifet, A., Gavaldà, R.: Adaptive learning from evolving data streams. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 249–260. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03915-7_22CrossRefGoogle Scholar
  4. 4.
    Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the 6th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 71–80 (2000)Google Scholar
  5. 5.
    Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28645-5_29CrossRefGoogle Scholar
  6. 6.
    Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46(4), 1–35 (2014)CrossRefGoogle Scholar
  7. 7.
    Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58(301), 13–30 (1963)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Huang, D.T.J., Koh, Y.S., Dobbie, G., Bifet, A.: Drift detection using stream volatility. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Soares, C., Gama, J., Jorge, A. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9284, pp. 417–432. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23528-8_26CrossRefGoogle Scholar
  9. 9.
    Huang, D.T.J., Koh, Y.S., Dobbie, G., Pears, R.: Detecting volatility shift in data streams. In: Proceedings of the 10th IEEE ICDM, pp. 863–868 (2014)Google Scholar
  10. 10.
    Kanji, G.K.: 100 Statistical Tests. Sage Publications, London (2006)CrossRefGoogle Scholar
  11. 11.
    Page, E.S.: Continuous inspection schemes. Biometrika 41, 100–115 (1954)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Pears, R., Sakthithasan, S., Koh, Y.S.: Detecting concept change in dynamic data streams. Mach. Learn. 97(3), 259–293 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ross, G.J., Adams, N.M., Tasoulis, D.K., Hand, D.J.: Exponentially weighted moving average charts for detecting concept drift. Pattern Recogn. Lett. 33(2), 191–198 (2012)CrossRefGoogle Scholar
  14. 14.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, vol. 25 (1995)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • David Tse Jung Huang
    • 1
    Email author
  • Yun Sing Koh
    • 1
  • Gillian Dobbie
    • 1
  1. 1.Department of Computer ScienceUniversity of AucklandAucklandNew Zealand

Personalised recommendations