Advertisement

A Hybrid Missing Data Imputation Method for Constructing City Mobility Indices

  • Sanaz NikfalazarEmail author
  • Chung-Hsing Yeh
  • Susan Bedingfield
  • Hadi Akbarzadeh Khorshidi
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 996)

Abstract

An effective missing data imputation method is essential for data mining and knowledge discovery from a comprehensive database with missing values. This paper proposes a new hybrid imputation method to effectively deal with the missing data issue of the Mobility in Cities Database (MCD) to construct city mobility indices. The hybrid method integrates the advantages of decision trees and fuzzy clustering into an iterative algorithm for missing data imputation. Extensive experiments conducted on the MCD and three commonly used datasets demonstrate that the hybrid method outperforms other existing effective imputation methods. With the MCD’s missing values imputed by the hybrid method, and using factor analysis and principal component analysis, this paper constructs city mobility indices for 63 cities in the MCD based on the novel concept of city mobility supply and demand. The city mobility indices constructed under a hierarchical structure of mobility supply and demand indicators represent substantial city mobility knowledge discovered from mining the MCD. The proposed hybrid method represents a significant contribution to missing data imputation research.

Keywords

Missing data imputation City mobility index Factor analysis Principal component analysis Decision tree Iterative fuzzy clustering 

References

  1. 1.
    Nikfalazar, S., Amiri, M., Khorshidi, H.A.: Social impact assessment on metro development with a case study in Eastern District of Tehran. Int. J. Soc. Syst. Sci. 6(3), 245–263 (2014)CrossRefGoogle Scholar
  2. 2.
    Rassafi, A.A., Vaziri, M.: Sustainable transport indicators: definition and integration. Int. J. Environ. Sci. Technol. 2(1), 83–96 (2005)CrossRefGoogle Scholar
  3. 3.
    Violato, R.R., Galves, M.L., de Oliveira, D.D.G.: Non-motorized mobility in central urban areas: application of multi-criteria decision aid in the city of campinas, Brazil. Int. J. Sustain. Transp. 8(6), 423–446 (2014)CrossRefGoogle Scholar
  4. 4.
    Haghshenas, H., Vaziri, M.: Urban sustainable transportation indicators for global comparison. Ecol. Ind. 15(1), 115–121 (2012)CrossRefGoogle Scholar
  5. 5.
    Moeinaddini, M., Asadi-Shekari, Z., Zaly Shah, M.: An urban mobility index for evaluating and reducing private motorized trips. Measurement 63, 30–40 (2015)CrossRefGoogle Scholar
  6. 6.
    Albalate, D., Bel, G.: What shapes local public transportation in Europe? Economics, mobility, institutions, and geography. Transp. Res. Part E Logist. Transp. Rev. 46(5), 775–790 (2010)CrossRefGoogle Scholar
  7. 7.
    Albalate, D., Bel, G.: Tourism and urban public transport: holding demand pressure under supply constraints. Tour. Manag. 31(3), 425–433 (2010)CrossRefGoogle Scholar
  8. 8.
    Alonso, A., Monzón, A., Cascajo, R.: Comparative analysis of passenger transport sustainability in European cities. Ecol. Ind. 48, 578–592 (2015)CrossRefGoogle Scholar
  9. 9.
    Reisi, M., Aye, L., Rajabifard, A., Ngo, T.: Land-use planning: implications for transport sustainability. Land Use Policy 50, 252–261 (2016)CrossRefGoogle Scholar
  10. 10.
    Joumard, R., Gudmundsson, H., Folkeson, L.: Framework for assessing indicators of environmental impacts in the transport sector. Transp. Res. Rec. 2242, 55–63 (2011)CrossRefGoogle Scholar
  11. 11.
    UITP: Mobility in cities database. International Association of Public Transport, Brussels (2015)Google Scholar
  12. 12.
    Nikfalazar, S., Yeh, C.-H., Bedingfield, S., Khorshidi, H.A.: A new iterative fuzzy clustering algorithm for multiple imputation of missing data. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6. IEEE, Naples (2017)Google Scholar
  13. 13.
    Rahman, M.G., Islam, M.Z.: Missing value imputation using a fuzzy clustering-based EM approach. Knowl. Inf. Syst. 46(2), 389–422 (2016)CrossRefGoogle Scholar
  14. 14.
    James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning: with Applications in R. Springer, New York (2013).  https://doi.org/10.1007/978-1-4614-7138-7CrossRefzbMATHGoogle Scholar
  15. 15.
    Sato-Ilic, M., Jain, L.C.: Innovations in Fuzzy Clustering: Theory and Applications. Springer, Heidelberg (2006).  https://doi.org/10.1007/3-540-34357-1CrossRefzbMATHGoogle Scholar
  16. 16.
    Campello, R.J.G.B., Hruschka, E.R.: A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Sets Syst. 157(21), 2858–2875 (2006)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J., Kolehmainen, M.: Methods for imputation of missing values in air quality data sets. Atmos. Environ. 38(18), 2895–2907 (2004)CrossRefGoogle Scholar
  18. 18.
    Cevallos Valdiviezo, H., Van Aelst, S.: Tree-based prediction on incomplete data using imputation or surrogate decisions. Inf. Sci. 311, 163–181 (2015)CrossRefGoogle Scholar
  19. 19.
    Rahman, M.G., Islam, M.Z.: Missing value imputation using decision trees and decision forests by splitting and merging records: two novel techniques. Knowl. Based Syst. 53, 51–65 (2013)CrossRefGoogle Scholar
  20. 20.
    Cheng, K.O., Law, N.F., Siu, W.C.: Iterative bicluster-based least square framework for estimation of missing values in microarray gene expression data. Pattern Recogn. 45(4), 1281–1289 (2012)CrossRefGoogle Scholar
  21. 21.
    Wang, X., Li, A., Jiang, Z., Feng, H.: Missing value estimation for DNA microarray gene expression data by support vector regression imputation and orthogonal coding scheme. BMC Bioinform. 7(32), 1–10 (2006)Google Scholar
  22. 22.
    Schneider, T.: Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. J. Clim. 14, 853–871 (2001)CrossRefGoogle Scholar
  23. 23.
    Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E.: Multivariate Data Analysis, 7th edn. Pearson Prentice Hall, Upper Saddle River (2014)Google Scholar
  24. 24.
    Tate, E.: Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis. Nat. Hazards 63(2), 325–347 (2012)CrossRefGoogle Scholar
  25. 25.
    Reckien, D.: What is in an index? Construction method, data metric, and weighting scheme determine the outcome of composite social vulnerability indices in New York City. Reg. Environ. Change 18(5), 1439–1451 (2018)CrossRefGoogle Scholar
  26. 26.
    Eyler, L., Hubbard, A., Juillard, C.: Assessment of economic status in trauma registries: a new algorithm for generating population-specific clustering-based models of economic status for time-constrained low-resource settings. Int. J. Med. Inf. 94, 49–58 (2016)CrossRefGoogle Scholar
  27. 27.
    Tajik, P., Majdzadeh, R.: Constructing pragmatic socioeconomic status assessment tools to address health equality challenges. Int. J. Prev. Med. 5(1), 46–51 (2014)Google Scholar
  28. 28.
    Vidal, R., Ma, Y., Sastry, S.S.: Generalized Principal Component Analysis. Interdisciplinary Applied Mathematics. Springer, New York (2016).  https://doi.org/10.1007/978-0-387-87811-9CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Monash UniversityClaytonAustralia
  2. 2.The University of MelbourneMelbourneAustralia

Personalised recommendations