Periostin pp 79-87 | Cite as

Ability of Periostin as a New Biomarker of Idiopathic Pulmonary Fibrosis

  • Masaki OkamotoEmail author
  • Kenji Izuhara
  • Shoichiro Ohta
  • Junya Ono
  • Tomoaki Hoshino
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1132)


The primarily pathogenesis of IPF, an incurable respiratory disease is believed to over-repair to lung injury. The development of new drugs for IPF has increased the necessity of identifying biomarkers for predicting clinical behavior and the selection of the appropriate treatment strategy for individual patient.

We and another group found that periostin, a matricellular protein expressed specifically in areas of ongoing fibrotic lesions, such as fibroblastic foci in lung tissues from human IPF or murine bleomycin-induced lung injury models. Murine bleomycin-induced lung injury was improved by the constant suppression of periostin expression and treatment with neutralizing anti-periostin antibodies at the fibroproliferative phase. Moreover, total periostin can predict both short-term declines of pulmonary function and overall survival in IPF patients. Our group also established a new enzyme-linked immunosorbent assay (ELISA) kit that is more specific for IPF compared with the conventional kit. This new periostin ELISA kit specifically detects monomeric form, whereas the conventional kit detects both monomeric and oligomeric forms. The monomeric periostin levels can be used to predict pulmonary function decline and to distinguish IPF patients from healthy controls.

In conclusion, periostin may play an important role in fibrogenesis and could be a potential biomarker for predicting disease progression and therapeutic effect in IPF patients.


Monomeric periostin Matricellular protein Idiopathic pulmonary fibrosis Fibroblast Myofibroblast Biomarker Interleukin-13 Interleukin-4 TGF-β 



We thank the colleagues and collaborators as follows: Kiminori Fujimoto, Koichi Ohshima, Tomotaka Kawayama, Yasuhiko Kitasato, Yuki Sakazaki, Morihiro Tajiri (Kurume University), Koichiro Takahashi, Shinichiro Hayashi, Masaru Uchida, Hiroshi Shiraishi, Kazuto Taniguchi, Shoichi Suzuki, Atsushi Kawaguchi (Saga University), Shigeki Kohno, Noriho Sakamoto (Nagasaki University), Junichi Kadota (Oita University), Masayuki Hanaoka, Hiroshi Yamamoto (Shinshu University), Masao Ichiki (Kyushu Medical Center), Hisako Kushima, Hiroshi Ishii (Fukuoka University), Keiichi Akasaka (Nigata Universtity Medical and Dental Hospital), Hironori Sagara (Syowa University), Takeshi Johkoh (Kinki Central Hospital), Seiya Kato (Saiseikai Fukuoka General Hospital), Hisako Matsumoto (Kyoto University), Yukie Yamaguchi, Michiko Aihara (Yokohama City University), Ayami Kamei, Yoshinori Azuma (Shino-Test Corp.), Simon J. Conway (Indiana University).


  1. 1.
    Ryerson CJ, Collard HR (2013) Update on the diagnosis and classification of ILD. Curr Opin Pulm Med 19:453–459CrossRefGoogle Scholar
  2. 2.
    Travis WD, Costabel U, Hansell DM et al (2013) An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med 188:733–748CrossRefGoogle Scholar
  3. 3.
    Mathai SC, Danoff SK (2016) Management of interstitial lung disease associated with connective tissue disease. BMJ 352:h6819CrossRefGoogle Scholar
  4. 4.
    Raghu G, Collard HR, Egan JJ et al (2011) An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183:788–824CrossRefGoogle Scholar
  5. 5.
    Raghu G, Rochwerg B, Zhang Y et al (2011) An official ATS/ERS/JRS/ALAT clinical practice guideline: treatment of idiopathic pulmonary fibrosis. An update of the 2011 clinical practice guideline. Am J Respir Crit Care Med 192:e3–e19CrossRefGoogle Scholar
  6. 6.
    Fernández Pérez ER, Daniels CE, Schroeder DR et al (2010) Incidence, prevalence, and clinical course of idiopathic pulmonary fibrosis: a population-based study. Chest 137:129–137CrossRefGoogle Scholar
  7. 7.
    Collard HR, Moore BB, Flaherty KR et al (2007) Idiopathic pulmonary fibrosis clinical research network investigators. Acute exacerbations of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 176:636–643CrossRefGoogle Scholar
  8. 8.
    Song JW, Hong SB, Lim CM et al (2011) Acute exacerbation of idiopathic pulmonary fibrosis: incidence, risk factors and outcome. Eur Respir J 37:356–363CrossRefGoogle Scholar
  9. 9.
    Kim DS, Park JH, Park BK et al (2006) Acute exacerbation of idiopathic pulmonary fibrosis: frequency and clinical features. Eur Respir J 27:143–150CrossRefGoogle Scholar
  10. 10.
    Strieter RM, Mehrad B (2009) New mechanisms of pulmonary fibrosis. Chest 136:1364–1370CrossRefGoogle Scholar
  11. 11.
    Ahluwalia N, Shea BS, Tager AM (2014) New therapeutic targets in idiopathic pulmonary fibrosis. Aiming to rein in runaway wound-healing responses. Am J Respir Crit Care Med 190:867–878CrossRefGoogle Scholar
  12. 12.
    Scotton CJ, Chambers RC (2007) Molecular targets in pulmonary fibrosis: the myofibroblast in focus. Chest 132:1311–1321CrossRefGoogle Scholar
  13. 13.
    King TE Jr, Schwarz MI, Brown K et al (2001) Idiopathic pulmonary fibrosis: relationship between histopathologic features and mortality. Am J Respir Crit Care Med 164:1025–1032CrossRefGoogle Scholar
  14. 14.
    Nicholson AG, Fulford LG, Colby TV et al (2002) The relationship between individual histologic features and disease progression in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 166:173–177CrossRefGoogle Scholar
  15. 15.
    Border WA, Noble NA (1994) Transforming growth factor beta in tissue fibrosis. N Engl J Med 331:1286–1292CrossRefGoogle Scholar
  16. 16.
    Jakubzick C, Choi ES, Kunkel SL et al (2004) Augmented pulmonary IL-4 and IL-13 receptor subunit expression in idiopathic interstitial pneumonia. J Clin Pathol 57:477–486CrossRefGoogle Scholar
  17. 17.
    Lee CG, Homer RJ, Zhu Z et al (2001) Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J Exp Med 194:809–821CrossRefGoogle Scholar
  18. 18.
    Richeldi L, du Bois RM, Raghu G et al (2014) Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 370:2071–2082CrossRefGoogle Scholar
  19. 19.
    King TE Jr, Bradford WZ, Castro-Bernardini S et al (2014) A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 370:2083–2092CrossRefGoogle Scholar
  20. 20.
    Raghu G, Scholand MB, de Andrade J et al (2016) FG-3019 anti-connective tissue growth factor monoclonal antibody: results of an open-label clinical trial in idiopathic pulmonary fibrosis. Eur Respir J 47:1481–1491CrossRefGoogle Scholar
  21. 21.
    Maher TM, van der Aar EM, Van de Steen O et al (2018) Safety, tolerability, pharmacokinetics, and pharmacodynamics of GLPG1690, a novel autotaxin inhibitor, to treat idiopathic pulmonary fibrosis (FLORA): a phase 2a randomised placebo-controlled trial. Lancet Respir Med 6:627–635CrossRefGoogle Scholar
  22. 22.
    Raghu G, van den Blink B, Hamblin MJ et al (2018) Effect of recombinant human pentraxin 2 vs placebo on change in forced vital capacity in patients with idiopathic pulmonary fibrosis: a randomized clinical trial. JAMA 319:2299–2307CrossRefGoogle Scholar
  23. 23.
    Latsi PI, du Bois RM, Nicholson AG, Colby TV, Bisirtzoglou D, Nikolakopoulou A, Veeraraghavan S, Hansel DM, Wells AU (2003) Fibrotic idiopathic interstitial pneumonia: the prognostic value of longitudinal functional trends. Am J Respir Crit Care Med 168:531–537CrossRefGoogle Scholar
  24. 24.
    Flaherty KR, Mumford JA, Murray S et al (2003) Prognostic implications of physiologic and radiographic changes in idiopathic interstitial pneumonia. Am J Respir Crit Care Med 168:543–548CrossRefGoogle Scholar
  25. 25.
    Ley B, Collard HR, King TE Jr (2011) Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 183:431–440CrossRefGoogle Scholar
  26. 26.
    Ley B, Brown KK, Collard HR (2014) Molecular biomarkers in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 307:L681–L691CrossRefGoogle Scholar
  27. 27.
    Prasse A, Probst C, Bargagli E et al (2009) Serum CC-chemokine ligand 18 concentration predicts outcome in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 179:717–723CrossRefGoogle Scholar
  28. 28.
    Rosas IO, Richards TJ, Konishi K et al (2008) MMP1 and MMP7 as potential peripheral blood biomarkers in idiopathic pulmonary fibrosis. PLoS Med 5:e93CrossRefGoogle Scholar
  29. 29.
    Yokoyama A, Kondo K, Nakajima M et al (2006) Prognostic value of circulating KL-6 in idiopathic pulmonary fibrosis. Respirology 11:164–168CrossRefGoogle Scholar
  30. 30.
    Takahashi H, Fujishima T, Koba H et al (2000) Serum surfactant proteins a and D as prognostic factors in idiopathic pulmonary fibrosis and their relationship to disease extent. Am J Respir Crit Care Med 162:1109–1114CrossRefGoogle Scholar
  31. 31.
    Ishikawa N, Hattori N, Yokoyama A et al (2012) Utility of KL-6/MUC1 in the clinical management of interstitial lung diseases. Respir Investig 50:3–13CrossRefGoogle Scholar
  32. 32.
    Brownell R, Kaminski N, Woodruff PG et al (2016) Precision medicine: the new frontier in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 193:1213–1218CrossRefGoogle Scholar
  33. 33.
    Conway SJ, Izuhara K, Kudo Y et al (2014) The role of periostin in tissue remodeling across health and disease. Cell Mol Life Sci 71:1279–1288CrossRefGoogle Scholar
  34. 34.
    Izuhara K, Nunomura S, Nanri Y et al (2017) Periostin in inflammation and allergy. Cell Mol Life Sci 74:4293–4303CrossRefGoogle Scholar
  35. 35.
    Takayama G, Arima K, Kanaji T et al (2006) Periostin: a novel component of subepithelial fibrosis of bronchial asthma downstream of IL-4 and IL-13 signals. J Allergy Clin Immunol 118:98–104CrossRefGoogle Scholar
  36. 36.
    Yamaguchi Y, Ono J, Masuoka M et al (2013) Serum periostin levels are correlated with progressive skin sclerosis in patients with systemic sclerosis. Br J Dermatol 168:717–725CrossRefGoogle Scholar
  37. 37.
    Yang L, Serada S, Fujimoto M et al (2012) Periostin facilitates skin sclerosis via PI3K/Akt dependent mechanism in a mouse model of scleroderma. PLoS One 7:e41994CrossRefGoogle Scholar
  38. 38.
    Okamoto M, Hoshino T, Kitasato Y et al (2011) Periostin, a matrix protein, is a novel biomarker for idiopathic interstitial pneumonias. Eur Respir J 37:1119–1127CrossRefGoogle Scholar
  39. 39.
    Uchida M, Shiraishi H, Ohta S et al (2012) Periostin, a matricellular protein, plays a role in the induction of chemokines in pulmonary fibrosis. Am J Respir Cell Mol Biol 46:677–686CrossRefGoogle Scholar
  40. 40.
    Naik PK, Bozyk PD, Bentley JK et al (2012) Periostin promotes fibrosis and predicts progression in patients with idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 303:L1046–L1056CrossRefGoogle Scholar
  41. 41.
    Ashley SL, Wilke CA, Kim KK et al (2017) Periostin regulates fibrocyte function to promote myofibroblast differentiation and lung fibrosis. Mucosal Immunol 10:341–351CrossRefGoogle Scholar
  42. 42.
    Nance T, Smith KS, Anaya V et al (2014) Transcriptome analysis reveals differential splicing events in IPF lung tissue. PLoS One 9:e92111CrossRefGoogle Scholar
  43. 43.
    Tajiri M, Okamoto M, Fujimoto K et al (2015) Serum level of periostin can predict long-term outcome of idiopathic pulmonary fibrosis. Respir Investig 53:73–81CrossRefGoogle Scholar
  44. 44.
    Ohta S, Okamoto M, Fujimoto K et al (2017) The usefulness of monomeric periostin as a biomarker for idiopathic pulmonary fibrosis. PLoS One 12:e0174547CrossRefGoogle Scholar
  45. 45.
    Moore BB, Hogaboam CM (2008) Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 294:L152–L160CrossRefGoogle Scholar
  46. 46.
    Neighbors M, Cabanski CR, Ramalingam TR et al (2018) Prognostic and predictive biomarkers for patients with idiopathic pulmonary fibrosis treated with pirfenidone: post-hoc assessment of the CAPACITY and ASCEND trials. Lancet Respir Med 6:615–626CrossRefGoogle Scholar
  47. 47.
    Takahashi F, Takahashi K, Okazaki T et al (2001) Role of osteopontin in the pathogenesis of bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 24:264–271CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Masaki Okamoto
    • 1
    Email author
  • Kenji Izuhara
    • 2
  • Shoichiro Ohta
    • 3
  • Junya Ono
    • 4
  • Tomoaki Hoshino
    • 1
  1. 1.Division of Respirology, Neurology, and Rheumatology, Department of Internal MedicineKurume University School of MedicineKurumeJapan
  2. 2.Division of Medical Biochemistry, Department of Biomolecular SciencesSaga Medical SchoolSagaJapan
  3. 3.Department of Medical Technology and SciencesSchool of Health Sciences at Fukuoka, International University of Health and WelfareOkawaJapan
  4. 4.Shino-Test CorporationSagamiharaJapan

Personalised recommendations