Advertisement

Periostin pp 23-32 | Cite as

Periostin Functions as a Scaffold for Assembly of Extracellular Proteins

  • Isao KiiEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1132)

Abstract

Periostin is a secretory matricellular protein with a multi-domain structure that is composed of an amino-terminal EMI domain, a tandem repeat of four FAS 1 domains, and a carboxyl-terminal domain (CTD). Periostin has been suggested to function as a scaffold for assembly of several extracellular matrix proteins as well as its accessory proteins (Fig. 3.1, Table 3.1), which underlies highly sophisticated extracellular architectures. This scaffold function is likely due to periostin’s multi-domain structure, in which the adjacent domains in periostin interact with different kinds of proteins, put these interacting proteins in close proximity, and promote intermolecular interactions between these proteins, leading to their assembly into a large complex. In this chapter, I introduce the proteins that interact with each of the adjacent domains in periostin, and discuss how the multi-domain structure of periostin functions as a scaffold for the assembly of the interacting proteins, and how it underlies construction of highly sophisticated extracellular architectures.

Keywords

EMI FAS 1 Heparin Fibronectin Tenascin-C Collagen BMP-1 CCN3 Lysyl oxidase Golgi Endoplasmic reticulum βig-h3 

References

  1. 1.
    Allaman-Pillet N, Oberson A, Schorderet DF (2017) Bigh3 silencing increases retinoblastoma tumor growth in the murine SV40-TAg-Rb model. Oncotarget 8:15490–15506.  https://doi.org/10.18632/oncotarget.14659 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ashley SL, Wilke CA, Kim KK, Moore BB (2017) Periostin regulates fibrocyte function to promote myofibroblast differentiation and lung fibrosis. Mucosal Immunol 10:341–351.  https://doi.org/10.1038/mi.2016.61 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bao S et al (2004) Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell 5:329–339CrossRefGoogle Scholar
  4. 4.
    Barker HE, Cox TR, Erler JT (2012) The rationale for targeting the LOX family in cancer. Nat Rev Cancer 12:540–552.  https://doi.org/10.1038/nrc3319 CrossRefPubMedGoogle Scholar
  5. 5.
    Bot S, Andreuzzi E, Capuano A, Schiavinato A, Colombatti A, Doliana R (2015) Multiple-interactions among EMILIN1 and EMILIN2 N- and C-terminal domains. Matrix Biol 41:44–55.  https://doi.org/10.1016/j.matbio.2014.10.001 CrossRefPubMedGoogle Scholar
  6. 6.
    Bozyk PD et al (2012) Neonatal periostin knockout mice are protected from hyperoxia-induced alveolar simplication. PLoS One 7:e31336.  https://doi.org/10.1371/journal.pone.0031336 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Callebaut I, Mignotte V, Souchet M, Mornon JP (2003) EMI domains are widespread and reveal the probable orthologs of the Caenorhabditis elegans CED-1 protein. Biochem Biophys Res Commun 300:619–623CrossRefGoogle Scholar
  8. 8.
    Canty EG, Kadler KE (2005) Procollagen trafficking, processing and fibrillogenesis. J Cell Sci 118:1341–1353.  https://doi.org/10.1242/jcs.01731 CrossRefGoogle Scholar
  9. 9.
    Canty EG, Lu Y, Meadows RS, Shaw MK, Holmes DF, Kadler KE (2004) Coalignment of plasma membrane channels and protrusions (fibripositors) specifies the parallelism of tendon. J Cell Biol 165:553–563.  https://doi.org/10.1083/jcb.200312071 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Canty EG et al (2006) Actin filaments are required for fibripositor-mediated collagen fibril alignment in tendon. J Biol Chem 281:38592–38598.  https://doi.org/10.1074/jbc.M607581200 CrossRefPubMedGoogle Scholar
  11. 11.
    Carr MD et al (2003) Solution structure of the Mycobacterium tuberculosis complex protein MPB70: from tuberculosis pathogenesis to inherited human corneal desease. J Biol Chem 278:43736–43743.  https://doi.org/10.1074/jbc.M307235200 CrossRefPubMedGoogle Scholar
  12. 12.
    Chang J et al (2017) Pre-clinical evaluation of small molecule LOXL2 inhibitors in breast cancer. Oncotarget 8:26066–26078.  https://doi.org/10.18632/oncotarget.15257 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Clout NJ, Hohenester E (2003) A model of FAS1 domain 4 of the corneal protein beta(ig)-h3 gives a clearer view on corneal dystrophies. Mol Vis 9:440–448PubMedGoogle Scholar
  14. 14.
    Clout NJ, Tisi D, Hohenester E (2003) Novel fold revealed by the structure of a FAS1 domain pair from the insect cell adhesion molecule fasciclin I. Structure 11:197–203CrossRefGoogle Scholar
  15. 15.
    Cui D, Huang Z, Liu Y, Ouyang G (2017) The multifaceted role of periostin in priming the tumor microenvironments for tumor progression. Cell Mol Life Sci 74:4287–4291.  https://doi.org/10.1007/s00018-017-2646-2 CrossRefPubMedGoogle Scholar
  16. 16.
    Doliana R, Bot S, Bonaldo P, Colombatti A (2000a) EMI, a novel cysteine-rich domain of EMILINs and other extracellular proteins, interacts with the gC1q domains and participates in multimerization. FEBS Lett 484:164–168PubMedGoogle Scholar
  17. 17.
    Doliana R, Canton A, Bucciotti F, Mongiat M, Bonaldo P, Colombatti A (2000b) Structure, chromosomal localization, and promoter analysis of the human elastin microfibril interfase located proteIN (EMILIN) gene. J Biol Chem 275:785–792CrossRefGoogle Scholar
  18. 18.
    Emon B, Bauer J, Jain Y, Jung B, Saif T (2018) Biophysics of tumor microenvironment and cancer metastasis – a mini review. Comput Struct Biotechnol J 16:279–287.  https://doi.org/10.1016/j.csbj.2018.07.003 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Erler JT et al (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440:1222–1226.  https://doi.org/10.1038/nature04695 CrossRefPubMedGoogle Scholar
  20. 20.
    Erler JT et al (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15:35–44.  https://doi.org/10.1016/j.ccr.2008.11.012 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Garnero P (2012) The contribution of collagen crosslinks to bone strength. Bonekey Rep 1:182.  https://doi.org/10.1038/bonekey.2012.182 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ghatak S et al (2014) Periostin induces intracellular cross-talk between kinases and hyaluronan in atrioventricular valvulogenesis. J Biol Chem 289:8545–8561.  https://doi.org/10.1074/jbc.M113.539882 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gillan L, Matei D, Fishman DA, Gerbin CS, Karlan BY, Chang DD (2002) Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. Cancer Res 62:5358–5364Google Scholar
  24. 24.
    Gonzalez-Gonzalez L, Alonso J (2018) Periostin: a matricellular protein with multiple functions in cancer development and progression. Front Oncol 8:225.  https://doi.org/10.3389/fonc.2018.00225 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hashimoto K et al (1997) Characterization of a cartilage-derived 66-kDa protein (RGD-CAP/beta ig-h3) that binds to collagen. Biochim Biophys Acta 1355:303–314CrossRefGoogle Scholar
  26. 26.
    Hoersch S, Andrade-Navarro MA (2010) Periostin shows increased evolutionary plasticity in its alternatively spliced region. BMC Evol Biol 10:30.  https://doi.org/10.1186/1471-2148-10-30 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hong L, Shejiao D, Fenrong C, Gang Z, Lei D (2015) Periostin down-regulation attenuates the pro-fibrogenic response of hepatic stellate cells induced by TGF-beta1. J Cell Mol Med 19:2462–2468.  https://doi.org/10.1111/jcmm.12636 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Horiuchi K et al (1999) Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res 14:1239–1249.  https://doi.org/10.1359/jbmr.1999.14.7.1239 CrossRefGoogle Scholar
  29. 29.
    Huang Y et al (2015) Matricellular protein periostin contributes to hepatic inflammation and fibrosis. Am J Pathol 185:786–797.  https://doi.org/10.1016/j.ajpath.2014.11.002 CrossRefPubMedGoogle Scholar
  30. 30.
    Humphries SM, Lu Y, Canty EG, Kadler KE (2008) Active negative control of collagen fibrillogenesis in vivo. Intracellular cleavage of the type I procollagen propeptides in tendon fibroblasts without intracellular fibrils. J Biol Chem 283:12129–12135.  https://doi.org/10.1074/jbc.M708198200 CrossRefPubMedGoogle Scholar
  31. 31.
    Hutchinson JH et al (2017) Small molecule lysyl oxidase-like 2 (LOXL2) inhibitors: the identification of an inhibitor selective for LOXL2 over LOX. ACS Med Chem Lett 8:423–427.  https://doi.org/10.1021/acsmedchemlett.7b00014 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hwang EY, Jeong MS, Park EK, Kim JH, Jang SB (2014) Structural characterization and interaction of periostin and bone morphogenetic protein for regulation of collagen cross-linking. Biochem Biophys Res Commun 449:425–431.  https://doi.org/10.1016/j.bbrc.2014.05.055 CrossRefPubMedGoogle Scholar
  33. 33.
    Ishikawa K et al (2014) Periostin promotes the generation of fibrous membranes in proliferative vitreoretinopathy. FASEB J 28:131–142.  https://doi.org/10.1096/fj.13-229740 CrossRefPubMedGoogle Scholar
  34. 34.
    Johnston KA, Lopez KM (2018) Lysyl oxidase in cancer inhibition and metastasis. Cancer Lett 417:174–181.  https://doi.org/10.1016/j.canlet.2018.01.006 CrossRefPubMedGoogle Scholar
  35. 35.
    Kadler KE, Hill A, Canty-Laird EG (2008) Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol 20:495–501.  https://doi.org/10.1016/j.ceb.2008.06.008 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kalson NS, Starborg T, Lu Y, Mironov A, Humphries SM, Holmes DF, Kadler KE (2013) Nonmuscle myosin II powered transport of newly formed collagen fibrils at the plasma membrane. Proc Natl Acad Sci U S A 110:E4743–E4752.  https://doi.org/10.1073/pnas.1314348110 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kannabiran C, Klintworth GK (2006) TGFBI gene mutations in corneal dystrophies. Hum Mutat 27:615–625.  https://doi.org/10.1002/humu.20334 CrossRefPubMedGoogle Scholar
  38. 38.
    Kapacee Z, Richardson SH, Lu Y, Starborg T, Holmes DF, Baar K, Kadler KE (2008) Tension is required for fibripositor formation. Matrix Biol 27:371–375.  https://doi.org/10.1016/j.matbio.2007.11.006 CrossRefPubMedGoogle Scholar
  39. 39.
    Kaur H et al (2016) Targeted ablation of periostin-expressing activated fibroblasts prevents adverse cardiac remodeling in mice. Circ Res 118:1906–1917.  https://doi.org/10.1161/CIRCRESAHA.116.308643 CrossRefPubMedGoogle Scholar
  40. 40.
    Khurana S, Schouteden S, Manesia JK, Santamaria-Martinez A, Huelsken J, Lacy-Hulbert A, Verfaillie CM (2016) Outside-in integrin signalling regulates haematopoietic stem cell function via Periostin-Itgav axis. Nat Commun 7:13500.  https://doi.org/10.1038/ncomms13500 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kii I, Ito H (2017) Periostin and its interacting proteins in the construction of extracellular architectures. Cell Mol Life Sci 74(23):4269–4277. https://doi.org/10.1007/s00018-017-2644-4. Epub 2017 Sep 8. Review. PMID: 28887577. https://www.ncbi.nlm.nih.gov/pubmed/28887577 CrossRefGoogle Scholar
  42. 42.
    Kii I, Amizuka N, Minqi L, Kitajima S, Saga Y, Kudo A (2006) Periostin is an extracellular matrix protein required for eruption of incisors in mice. Biochem Biophys Res Commun 342:766–772.  https://doi.org/10.1016/j.bbrc.2006.02.016 CrossRefGoogle Scholar
  43. 43.
    Kii I, Nishiyama T, Li M, Matsumoto K, Saito M, Amizuka N, Kudo A (2010) Incorporation of tenascin-C into the extracellular matrix by periostin underlies an extracellular meshwork architecture. J Biol Chem 285:2028–2039.  https://doi.org/10.1074/jbc.M109.051961 CrossRefGoogle Scholar
  44. 44.
    Kii I, Nishiyama T, Kudo A (2016) Periostin promotes secretion of fibronectin from the endoplasmic reticulum. Biochem Biophys Res Commun 470:888–893.  https://doi.org/10.1016/j.bbrc.2016.01.139 CrossRefGoogle Scholar
  45. 45.
    Kim BY et al (2009) Corneal dystrophy-associated R124H mutation disrupts TGFBI interaction with Periostin and causes mislocalization to the lysosome. J Biol Chem 284:19580–19591.  https://doi.org/10.1074/jbc.M109.013607 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Leask A (2007) CCN3: a novel function in vivo. J Cell Commun Signal 1:227–228.  https://doi.org/10.1007/s12079-008-0019-1 CrossRefPubMedGoogle Scholar
  47. 47.
    Liu AY, Zheng H, Ouyang G (2014) Periostin, a multifunctional matricellular protein in inflammatory and tumor microenvironments. Matrix Biol 37:150–156.  https://doi.org/10.1016/j.matbio.2014.04.007 CrossRefPubMedGoogle Scholar
  48. 48.
    Liu J, Zhang J, Xu F, Lin Z, Li Z, Liu H (2018) Structural characterizations of human periostin dimerization and cysteinylation. FEBS Lett 592:1789–1803.  https://doi.org/10.1002/1873-3468.13091 CrossRefPubMedGoogle Scholar
  49. 49.
    Lorts A, Schwanekamp JA, Elrod JW, Sargent MA, Molkentin JD (2009) Genetic manipulation of periostin expression in the heart does not affect myocyte content, cell cycle activity, or cardiac repair. Circ Res 104:e1–e7.  https://doi.org/10.1161/CIRCRESAHA.108.188649 CrossRefPubMedGoogle Scholar
  50. 50.
    Lorts A, Schwanekamp JA, Baudino TA, McNally EM, Molkentin JD (2012) Deletion of periostin reduces muscular dystrophy and fibrosis in mice by modulating the transforming growth factor-beta pathway. Proc Natl Acad Sci U S A 109:10978–10983.  https://doi.org/10.1073/pnas.1204708109 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Maruhashi T, Kii I, Saito M, Kudo A (2010) Interaction between periostin and BMP-1 promotes proteolytic activation of lysyl oxidase. J Biol Chem 285:13294–13303.  https://doi.org/10.1074/jbc.M109.088864 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Midwood KS, Chiquet M, Tucker RP, Orend G (2016) Tenascin-C at a glance. J Cell Sci 129:4321–4327.  https://doi.org/10.1242/jcs.190546 CrossRefPubMedGoogle Scholar
  53. 53.
    Mosher DF, Johansson MW, Gillis ME, Annis DS (2015) Periostin and TGF-beta-induced protein: two peas in a pod? Crit Rev Biochem Mol Biol 50:427–439.  https://doi.org/10.3109/10409238.2015.1069791 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Nakama T et al (2015) Inhibition of choroidal fibrovascular membrane formation by new class of RNA interference therapeutic agent targeting periostin. Gene Ther 22:127–137.  https://doi.org/10.1038/gt.2014.112 CrossRefGoogle Scholar
  55. 55.
    Nakama T et al (2017) Therapeutic effect of novel single-stranded RNAi agent targeting periostin in eyes with retinal neovascularization molecular therapy. Nucleic Acids 6:279–289.  https://doi.org/10.1016/j.omtn.2017.01.004 CrossRefPubMedGoogle Scholar
  56. 56.
    Nam BY et al (2017) Periostin-binding DNA aptamer treatment ameliorates peritoneal dialysis-induced peritoneal fibrosis molecular therapy. Nucleic Acids 7:396–407.  https://doi.org/10.1016/j.omtn.2017.05.001 CrossRefPubMedGoogle Scholar
  57. 57.
    Nishiyama T et al (2011) Delayed re-epithelialization in periostin-deficient mice during cutaneous wound healing. PLoS One 6:e18410.  https://doi.org/10.1371/journal.pone.0018410 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Norris RA et al (2007) Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. J Cell Biochem 101:695–711.  https://doi.org/10.1002/jcb.21224 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Oka T et al (2007) Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circ Res 101:313–321.  https://doi.org/10.1161/CIRCRESAHA.107.149047 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Orecchia P et al (2011) Identification of a novel cell binding site of periostin involved in tumour growth. Eur J Cancer 47:2221–2229.  https://doi.org/10.1016/j.ejca.2011.04.026 CrossRefPubMedGoogle Scholar
  61. 61.
    Perbal B (2018) The concept of the CCN protein family revisited: a centralized coordination network. J Cell Commun Signal 12:3–12.  https://doi.org/10.1007/s12079-018-0455-5 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Ratajczak-Wielgomas K, Dziegiel P (2015) The role of periostin in neoplastic processes. Folia Histochem Cytobiol 53:120–132.  https://doi.org/10.5603/FHC.a2015.0014 CrossRefPubMedGoogle Scholar
  63. 63.
    Rowbottom MW et al (2017) Identification of 4-(aminomethyl)-6-(trifluoromethyl)-2-(phenoxy)pyridine derivatives as potent, selective, and orally efficacious inhibitors of the copper-dependent amine oxidase, lysyl oxidase-like 2 (LOXL2). J Med Chem 60:4403–4423.  https://doi.org/10.1021/acs.jmedchem.7b00345 CrossRefPubMedGoogle Scholar
  64. 64.
    Schiavinato A et al (2012) EMILIN-3, peculiar member of elastin microfibril interface-located protein (EMILIN) family, has distinct expression pattern, forms oligomeric assemblies, and serves as transforming growth factor beta (TGF-beta) antagonist. J Biol Chem 287:11498–11515.  https://doi.org/10.1074/jbc.M111.303578 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Schwanekamp JA, Lorts A, Vagnozzi RJ, Vanhoutte D, Molkentin JD (2016) Deletion of periostin protects against atherosclerosis in mice by altering inflammation and axtracellular matrix remodeling. Arterioscler Thromb Vasc Biol 36:60–68.  https://doi.org/10.1161/ATVBAHA.115.306397 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Shao R et al (2004) Acquired expression of periostin by human breast cancers promotes tumor angiogenesis through up-regulation of vascular endothelial growth factor receptor 2 expression. Mol Cell Biol 24:3992–4003CrossRefGoogle Scholar
  67. 67.
    Shimazaki M et al (2008) Periostin is essential for cardiac healing after acute myocardial infarction. J Exp Med 205:295–303.  https://doi.org/10.1084/jem.20071297 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Sugiura T, Takamatsu H, Kudo A, Amann E (1995) Expression and characterization of murine osteoblast-specific factor 2 (OSF-2) in a baculovirus expression system. Protein Expr Purif 6:305–311.  https://doi.org/10.1006/prep.1995.1040 CrossRefPubMedGoogle Scholar
  69. 69.
    Sugiyama A et al (2016) Periostin promotes hepatic fibrosis in mice by modulating hepatic stellate cell activation via alphav integrin interaction. J Gastroenterol 51:1161–1174.  https://doi.org/10.1007/s00535-016-1206-0 CrossRefPubMedGoogle Scholar
  70. 70.
    Suzuki H et al (2004) Immunohistochemical localization of periostin in tooth and its surrounding tissues in mouse mandibles during development. Anat Rec A Discov Mol Cell Evol Biol 281:1264–1275.  https://doi.org/10.1002/ar.a.20080 CrossRefGoogle Scholar
  71. 71.
    Takayama G et al (2006) Periostin: a novel component of subepithelial fibrosis of bronchial asthma downstream of IL-4 and IL-13 signals. J Allergy Clin Immunol 118:98–104.  https://doi.org/10.1016/j.jaci.2006.02.046 CrossRefGoogle Scholar
  72. 72.
    Takayama I, Kii I, Kudo A (2009) Expression, purification and characterization of soluble recombinant periostin protein produced by Escherichia coli. J Biochem 146:713–723.  https://doi.org/10.1093/jb/mvp117 CrossRefPubMedGoogle Scholar
  73. 73.
    Takayama I et al (2017) Periostin is required for matricellular localization of CCN3 in periodontal ligament of mice. J Cell Commun Signal 11:5–13.  https://doi.org/10.1007/s12079-016-0371-5 CrossRefPubMedGoogle Scholar
  74. 74.
    Tanabe H et al (2010) Periostin associates with Notch1 precursor to maintain Notch1 expression under a stress condition in mouse cells. PLoS One 5:e12234.  https://doi.org/10.1371/journal.pone.0012234 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Taniyama Y et al (2016) Selective blockade of periostin exon 17 preserves cardiac performance in acute myocardial infarction. Hypertension 67:356–361.  https://doi.org/10.1161/HYPERTENSIONAHA.115.06265 CrossRefGoogle Scholar
  76. 76.
    Taylor SH et al (2015) Matrix metalloproteinase 14 is required for fibrous tissue expansion. eLife 4:e09345.  https://doi.org/10.7554/eLife.09345 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Trackman PC (2016) Enzymatic and non-enzymatic functions of the lysyl oxidase family in bone. Matrix Biol 52−54:7–18.  https://doi.org/10.1016/j.matbio.2016.01.001 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Turtle E et al (2012) Design and synthesis of procollagen C-proteinase inhibitors. Bioorg Med Chem Lett 22:7397–7401.  https://doi.org/10.1016/j.bmcl.2012.10.067 CrossRefPubMedGoogle Scholar
  79. 79.
    Uchida M et al (2012) Periostin, a matricellular protein, plays a role in the induction of chemokines in pulmonary fibrosis. Am J Respir Cell Mol Biol 46:677–686.  https://doi.org/10.1165/rcmb.2011-0115OC CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Underwood TJ et al (2015) Cancer-associated fibroblasts predict poor outcome and promote periostin-dependent invasion in oesophageal adenocarcinoma. J Pathol 235:466–477.  https://doi.org/10.1002/path.4467 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Vadon-Le Goff S, Hulmes DJ, Moali C (2015) BMP-1/tolloid-like proteinases synchronize matrix assembly with growth factor activation to promote morphogenesis and tissue remodeling. Matrix Biol 44−46:14–23.  https://doi.org/10.1016/j.matbio.2015.02.006 CrossRefPubMedGoogle Scholar
  82. 82.
    Yang L et al (2012) Periostin facilitates skin sclerosis via PI3K/Akt dependent mechanism in a mouse model of scleroderma. PLoS One 7:e41994.  https://doi.org/10.1371/journal.pone.0041994 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Yokota K et al (2017) Periostin promotes scar formation through the interaction between pericytes and infiltrating monocytes/macrophages after spinal cord injury. Am J Pathol 187:639–653.  https://doi.org/10.1016/j.ajpath.2016.11.010 CrossRefPubMedGoogle Scholar
  84. 84.
    Zacchigna L et al (2006) Emilin1 links TGF-beta maturation to blood pressure homeostasis. Cell 124:929–942.  https://doi.org/10.1016/j.cell.2005.12.035 CrossRefPubMedGoogle Scholar
  85. 85.
    Zanetti M et al (2004) EMILIN-1 deficiency induces elastogenesis and vascular cell defects. Mol Cell Biol 24:638–650CrossRefGoogle Scholar
  86. 86.
    Zhu M, Saxton RE, Ramos L, Chang DD, Karlan BY, Gasson JC, Slamon DJ (2011) Neutralizing monoclonal antibody to periostin inhibits ovarian tumor growth and metastasis. Mol Cancer Ther 10:1500–1508.  https://doi.org/10.1158/1535-7163.MCT-11-0046 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Laboratory for Pathophysiological and Heath ScienceRIKEN Center for Biosystems Dynamics ResearchChuo-ku, KobeJapan
  2. 2.Compass to Healthy Life Research Complex Program, RIKEN Cluster for Science, Technology and Innovation HubChuo-ku, KobeJapan

Personalised recommendations