Periostin pp 7-20 | Cite as

The Structure of the Periostin Gene, Its Transcriptional Control and Alternative Splicing, and Protein Expression

  • Akira KudoEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1132)


Although many studies have described the role of periostin in various diseases, the functions of periostin derived from alternative splicing and proteinase cleavage at its C-terminus remain unknown. Further experiments investigating the periostin structures that are relevant to diseases are essential for an in-depth understanding of their functions, which would accelerate their clinical applications by establishing new approaches for curing intractable diseases. Furthermore, this understanding would enhance our knowledge of novel functions of periostin related to stemness and response to mechanical stress.


Periostin gene Alternative splicing TGF-β inducible gene IL-4/IL13 Periostin protein Fas1 domain EMI domain Proteinase digestion Heparin-binding site Heart regeneration 



I thank my collaborators involved in the periostin project for providing figures.


  1. 1.
    Afanador E, Yokozeki M, Oba Y, Kitase Y, Takahashi T, Kudo A, Moriyama K (2005) Messenger RNA expression of periostin and twist transiently decrease by occlusal hypofunction in mouse periodontal ligament. Arc Oral Biol 50:1023–1031CrossRefGoogle Scholar
  2. 2.
    Annis DS, Ma H, Balas DM, Kumfer KT, Sandbo N, Potts GK, Coon JJ, Mosher DF (2015) Absence of vitamin-K-dependent γ-carboxylation in human periostin extracted from fibrotic lung of secreted from a cell line engineered to optimize γ-carboxylation. PLoS One 10:e0135374PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Aurora AB, Porrello ER, Tan W, Mahmound AI, Hill JA, Bassel-Duby R, Sadek HA, Olson EN (2018) Macrophages are required for neonatal heart regeneration. J Clin Invest 124:1382–1392CrossRefGoogle Scholar
  4. 4.
    Bialek P, Kern B, Yang X, Schrock M, Sosic D, Hong N, Wu H, Yu K, Ornitz DM, Olson EN, Justice MJ, Karsenty G (2004) A twist code determines the onset of osteoblast differentiation. Develop Cell 6:423–435CrossRefGoogle Scholar
  5. 5.
    Bonnet N, Brun J, Rousseau J-C, Duong LT, Ferrari SL (2017) Cathepsin K controls cortical bone formation by degrading periostin. J Bone Miner Res 7:1432–1441CrossRefGoogle Scholar
  6. 6.
    Bultmann H, Santas AJ, Pesciotta Peters DM (1998) Fibronectin fibrillogenesis involves the heparin II binding domain of fibronectin. J Biol Chem 273:2601–2609PubMedCrossRefGoogle Scholar
  7. 7.
    Chen Y, Guo H, Terajima M, Banerjee P, Liu X, Yu J, Momin AA, Karayama H, Hanash SM, Burns AR, Fields GB, Yamauchi M, Kurie JM (2016) Lysyl hydroxylase 2 is secreted by tumor cells and can modify collagen in the extracellular space. J Biol Chem 291:25799–25808PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Chen Z, Xie J, Hao H, Lin H, Wang L, Zhang Y, Chen L, Cao S, Huang X, Liao W, Bin J, Liao Y (2017) Ablation of periostin inhibits post-infarction myocardial regeneration in neonatal mice mediated by the phosphatidylinositol 3 kinase/glycogen synthase kinase 3β/cyclin D1 signaling pathway. Cardiovasc Res 113:620–632PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Connerney J, Andreeva V, Leshem Y, Muentener C, Mercado MA, Spicer DB (2006) Twist 1 dimer selection regulates cranial suture patterning and fusion. Dev Dyn 235:1345–1357PubMedCrossRefGoogle Scholar
  10. 10.
    Conway SJ, Izuhara K, Kudo Y, Litvin J, Markwald R, Ouyang G, Arron JR, Holweg CTJ, Kudo A (2014) The role of periostin in tissue remodeling across health and disease. Cell Mol Life Sci 71:1279–1288CrossRefPubMedGoogle Scholar
  11. 11.
    Coutu DL, Hui Wu J, Monette A, Rivard G-E, Blostein MD, Galipeau J (2008) Periostin, a member of a novel family of Vitamin K-dependent proteins, is expressed by mesenchymal stromal cells. J Biol Chem 283:17991–18001PubMedCrossRefGoogle Scholar
  12. 12.
    Cox TR, Rumney RMH, Schoof EM, Perryman L, Hoye AM, Agrawal A, Bird D, Latif NA, Foreest H, Evans HR, Huggins ID, Lang G, Linding R, Gartland A, Erler JT (2015) The hypoxic cancer secretome induces pre-metastic bone lesions through lysyl oxidase. Nature 522:106–110PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Dai Q, Xie F, Han Y, Ma X, Zhou S, Jiang L, Zou W, Wang J (2017) Inactivation of regulatory-associated protein of mTOR (Raptor)/mammalian Target of Rapamycin Complex 1 (mTORC1) signaling in osteoclasts increases bone mass by inhibiting osteoclast differentiation in mice. J Biol Chem 292:196–204PubMedCrossRefGoogle Scholar
  14. 14.
    de Lageneste PD, Julien A, Abou-Khalil R, Frangi G, Carvalho C, Cagnard N, Cordier C, Conway SJ, Colnot C (2018) Periostium contains skeletal stem cells with high bone regenerative potential controlled by periostin. Nat Commun 9:773CrossRefGoogle Scholar
  15. 15.
    Djokic J, Fagotto-Kaufmann C, Bartels R, Nelea V, Reinhardt DP (2013) Fiblin-3,-4, and-5 are highly susceptible to proteolysis, interact with cells and heparin, and form multimers. J Biol Chem 288:22821–22835PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Doliana R, Bot S, Bonaldo P, Colombatti A (2000) EMI, a novel cysteine-rich domain of EMILINs and other extracellular proteins, interacts with the gC1q domains and participates in multimerization. FEBS Lett 484:164–168PubMedCrossRefGoogle Scholar
  17. 17.
    Franco HL, Casasnovas JJ, Lenon RG, Friesel R, Ge Y, Desnick RJ (2011) Nonsense mutations of the bHLH transcription factor TWIST2 found in Setleis syndrome patients cause dysregulation of periostin. Int J Biochem Cell Biol 43:1523–1531PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Gamba L, Amin-Javaheri A, Kim J, Warburton D, Lien C-L (2017) Collagenolytic activity is associated with scar resolution in zebrafish hearts after cryoinjury. J Cardiovasc Dev Dis 4:2PubMedCentralCrossRefGoogle Scholar
  19. 19.
    Gartland A, Erler JT, Cox TR (2016) The role of lysyl oxidase, the extracellular matrix and the pre-metastatic niche in bone metastasis. J Bone Oncol 5:100–103PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Ge G, Greenspan DG (2006) Developmental roles of the BMP1/TLD metalloproteinases. Birth Defects Res (Part C) 78:47–68CrossRefGoogle Scholar
  21. 21.
    Gineyts E, Bonnet N, Bertholon C, Millet M, Pagnon-Minot A, Borel O, Geraci S, Bonnelye E, Croset M, Suhail A, Truica C, Lamparella N, Leitzel K, Hartmann D, Chapurlat R, Lipton A, Ganero P, Ferrari S, Clezardin P, Rousseau J-C (2018) The C-terminal intact forms of periostin (iPTN) are surrogate markers for osteolytic lesions in experimental breast cancer bone metastasis. Calcified Tissue Int. PubMedCrossRefGoogle Scholar
  22. 22.
    Gonzalez-Rosa JM, Peralta M, Mercader N (2012) Pan-epicardial lineage tracing reveals that epicardium derived cells give rise to myofibroblasts and perivascular cells during zebrafish heart regeneration. Dev Biol 370:173–186PubMedCrossRefGoogle Scholar
  23. 23.
    Gonzalez-Rosa JM, Burns CE, Burns CG (2017) Zebrafish heart regeneration: 15 years of discoveries. Regeneration 4:105–123PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593–604PubMedCrossRefGoogle Scholar
  25. 25.
    Guo X, Xue H, Shao Q, Wang J, Guo X, Chen X, Zhang J, Xu S, Li T, Zhang P, Gao X, Qiu W, Liu Q, Li G (2016) Hypoxia promotes glioma-associated macrophage infiltration via periostin and subsequent M2 polarization by upregulating TGF-beta and M-CSFR. Oncotarget 7:80521–80542PubMedPubMedCentralGoogle Scholar
  26. 26.
    Gupta R, Hong D, Iborra F, Sarno S, Enver T (2007) NOV(CCN3) functions as a regulator of human hematopoietic stem of progenitor cells. Science 316:590–593PubMedCrossRefGoogle Scholar
  27. 27.
    Han F, Gilbert JR, Harrison G, Adams CS, Freeman T, Tao Z, Zaka R, Liang H, Williams C, Tuan RS, Norton PA, Hickok NJ (2007) Transforming growth factor-β1 regulates fibronectin isoform expression and splicing factor SRp40 expression during ATDC5 chondrogenic maturation. Exp Cell Res 313:1518–1532PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Hashimoto K, Noshiro M, Ohno S, Kawamoto T, Satakeda H, Akagawa Y, Nakashima K, Okimura A, Ishida H, Okamoto T, Pan H, Shen M, Yan W, Kato Y (1997) Characterization of a cartilage-derived 66-kDa protein (RGD-CAP/beta ig-h3) that binds to collagen. Biochim Biophys Acta 1355:303–314PubMedCrossRefGoogle Scholar
  29. 29.
    Hoersch S, Andrade-Navarro MA (2010) Periostin shows increased evolutionary plasticity in its alternatively spliced region. BMC Evo Biol 10:30CrossRefGoogle Scholar
  30. 30.
    Horiguchi M, Inoue T, Ohbayashi T, Hirai M, Noda K, Marmorstein LY, Yabe D, Takagi K, Akama TO, Kita T, Kimura T, Nakamura T (2009) Fibulin-4 conducts proper elastogenesis via interaction with cross-linking enzyme lysyl oxidase. Proc Natl Acad Sci U S A 45:19029–19034CrossRefGoogle Scholar
  31. 31.
    Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H, Toyama Y, Bonewald LF, Kudo A (1999) Identification and characterization of a novel protein, periostin with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor β. J Bone Miner Res 14:1239–1249CrossRefPubMedGoogle Scholar
  32. 32.
    Hortsh M, Goodman CS (1991) Cell and substrate adhesion molecules in Drosophila. Annu Rev Cell Biol 7:505–557CrossRefGoogle Scholar
  33. 33.
    Hudson JE, Porrello ER (2017) Periostin paves the way for neonatal heart regeneration. Cardiovasc Res 113:556–558PubMedCrossRefGoogle Scholar
  34. 34.
    Inai K, Norris RA, Hoffman S, Markwald RR, Sugi Y (2008) BMP-2 induces cell migration and periostin expression during atrioventricular valvulogenesis. Dev Biol 315:383–396PubMedCrossRefGoogle Scholar
  35. 35.
    Ishihara J, Umemoto T, Yamato M, Shiratsuchi Y, Takaki S, Petrich BG, Nakauchi H, Eto K, Kitamura T, Okano T (2014) Nov/CCN3 regulates long-term repopulating activity of murine hematopoietic stem cells via integrin avb3. Int J Hematol 99:393–406PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Ito N, Ruegg UT, Kudo A, Miyagoe-Suzuki Y, Takeda S (2013) Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nat Med 19:101–106PubMedCrossRefGoogle Scholar
  37. 37.
    Ito K, Morioka M, Kimura S, Tasaki M, Inohaya K, Kudo A (2014) Differential reparative phenotypes between zebrafish and medaka after cardiac injury. Dev Dyn 243:1106–1115PubMedCrossRefGoogle Scholar
  38. 38.
    Kashima TG, Nishiyama T, Shimazu K, Shimazaki M, Kii I, Grigoriadis AE, Fukayama F, Kudo A (2009) Periostin, a novel marker of intramembranous ossification, is expressed in fibrous dysplasia and in c-Fos-overexpressing bone lesions. Hum Pathol 40:226–237CrossRefPubMedGoogle Scholar
  39. 39.
    Katogi R, Nakatani Y, Shin-I T, Kohara Y, Inohaya K, Kudo A (2004) Large-scale analysis of the genes involved in fin regeneration and blastema formation in the medaka, Oryzias latipes. Mech Dev 121:861–872PubMedCrossRefGoogle Scholar
  40. 40.
    Khurana S, Schouteden S, Manesia JK, Sanamaria-Martinez A, Huelsken J, Lacy-Hulbert A, Verfaillie CM (2016) Outside-in integrin signaling regulates haematopoietic stem cell function via Periostin-Itgav axis. Nat Commun 7:13500PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kii I, Nishiyama T, Li M, Matsumoto K, Saito M, Amizuka N, Kudo A (2010) Incorporation of tenascin-C into the extracellular matrix by periostin underlies an extracellular meshwork architecture. J Biol Chem 285:2028–2039CrossRefPubMedGoogle Scholar
  42. 42.
    Kii I, Nishiyama T, Kudo A (2016) Periostin promotes secretion of fibronectin from the endoplasmic reticulum. Biochem Biophy Res Commun 470:888–893CrossRefGoogle Scholar
  43. 43.
    Kim JE, Kim SJ, Lee BH, Park RW, Kim KS, Kim IS (2000) Identification of motifs for cell adhesion within the repeated domains of transforming growth factor-beta-induced gene, beta ig-h3. J Biol Chem 275:30907–30915PubMedCrossRefGoogle Scholar
  44. 44.
    Kim BY, Olzmann JA, Choi SI, Ahn SY, Kim TI, Cho HS, Suh H, Kim EK (2009) Corneal dystrophy-associated R124H mutation disrupts TGFBI interaction with Periostin and causes mislocalization to the lysosome. J Biol Chem 284:19580–19591PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kim H-G, Hwang S-Y, Aaronson SA, Mandinova A, Lee SW (2011) DDR1 receptor tyrosin kinase promotes prosurvival pathway through Notch 1 activation. J Biol Chem 286:17672–17681PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Kondoh H, Nishiyama T, Kikuchi Y, Fukayama M, Saito M, Kii I, Kudo A (2016) Periostin deficiency causes severe and lethal lung injury in mice with bleomycin administration. J Histochem Cytochem 64:441–453PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Kudo A (2011) Periostin in fibrillogenesis for tissue regeneration: periostin actions inside and outside the cell. Cell Mol Life Sci 68:3201–3207PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Kudo A (2017) Introductory review: periostin-gene and protein structure. Cell Mol Life Sci 74:4259–4268CrossRefPubMedGoogle Scholar
  49. 49.
    Kudo H, Amizuka N, Araki K, Inohaya K, Kudo A (2004) Zebrafish periostin is required for the adhesion of muscle fiber bundles to the myoseptum and for the differentiation of muscle fibers. Dev Biol 267:473–487PubMedCrossRefGoogle Scholar
  50. 50.
    Kurisaki K, Kurisaki A, Valcourt U, Terentiev AA, Pardali K, ten Dijke P, Heldin C-H, Ericsson J, Moustakas A (2003) Nuclear factor YY1 inhibits transforming growth factor {beta}- and bone morphogenetic protein-induced cell differentiation. Mol Cell Biol 23:4494–4510PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Lai S-L, Marin-Juez R, Moura PL, Kuenne C, Lai JKH, Tsedeke AT, Guenther S, Looso M, Stainier DYR (2017) Reciprocal analyses in zebrafish and medaka reveal that harnessing the immune response promotes cardiac regeneration. elife 6:e25605PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Landre V, Antonov A, Knight R, Melino G (2016) p73 promotes glioblastoma cell invasion by directly activating POSN (periostin) expression. Oncotarget 7:11785–11802PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Lee MS, Lowe G, Strong DD, Wergedal J, Glackin CA (1999) TWIST, a basic-loop-helix transcription factor, can regulate the human osteogenetic lineage. J Cell Biochem 75:566–567PubMedCrossRefGoogle Scholar
  54. 54.
    Lindsley A, Snider P, Zhou H, Rogers R, Wang J, Olaopa M, Kruzynska-Frejtag A, Koushik SV, Lilly B, Burch JBE, Firulli AB, Conway SJ (2007) Identification and characterization of a novel Schwann and outflow tract endocardial cushion lineage-restricted periostin enhancer. Dev Biol 307:340–355PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Liu J, Zhang J, Xu F, Lin Z, Li Z, Liu H (2018) Structural characterization of human periostin dimerization and cysteinylation. FEBS Lett. PubMedCrossRefGoogle Scholar
  56. 56.
    Maruhashi T, Kii I, Saito M, Kudo A (2010) Interaction between periostin and BMP-1 promotes proteolytic activation of lysyl oxidase. J Biol Chem 285:13294–13303PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Masuoka M, Shiraishi H, Ohta S, Suzuki S, Arima K, Aoki S, Toda S, Inagaki N, Kurihara Y, Hayashida S, Takeuchi S, Koike K, Ono J, Noshiro H, Furue M, Conway SJ, Narisawa Y, Izihara K (2012) Periostin promotes chronic allergic inflammation in response to Th2 cytokines. J Clin Invest 122:2590–2600PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Merie B, Bouet G, Rousseau J-C, Betholon C, Garnero P (2014) Periostin and transforming growth factor β-induced protein (TGFβIp) are both expressed by osteoblasts and osteoclasts. Cell Biol Int 38:398–404CrossRefGoogle Scholar
  59. 59.
    Mikheev AM, Mikheeva SA, Severts LJ, Funk CC, Huang L, McFaline-Figueroa JL, Schwensen J, Trapnell C, Price ND, Wong S, Rostomily RC (2018) Targeting TWIST1 through loss of function inhibits tumorigenicity of human glioblastoma. Mol Oncol 12:1188–1202PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Morra L, Rechsteiner M, Casagrande S, Duc Luu V, Santimaria R, Diener PA, Sulser T, Kristiansen G, Schraml P, Moch H, Soltermann A (2011) Relevance of periostin splice variants in renal cell carcinoma. Am J Pathol 179:1513–1521PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Morra L, Rechsteiner M, Casagrande S, von Teichman A, Schraml P, Moch H, Soltermann A (2012) Characterization of periostin isoform pattern in non-small cell lung cancer. Lung Cancer 76:183–190PubMedCrossRefGoogle Scholar
  62. 62.
    Munier FL, Korvatska E, Djemai A, Le Paslier D, Zografos L, Pescia G, Schorderet DF (1997) Kerato-epithelin mutations in four 5q31-linked corneal dystrophies. Nat Genet 15:247–251PubMedCrossRefGoogle Scholar
  63. 63.
    Nakama T, Yoshida S, Ishikawa K, Kobayashi Y, Abe T, Kiyonari H, Shioi G, Katsuragi N, Ishibashi T, Morishita R, Taniyama Y (2016) Different roles played by periostin splice variants in retinal neovascularization. Exp Eye Res 153:133–140CrossRefPubMedGoogle Scholar
  64. 64.
    Nance T, Smith KS, Anaya V, Richardson R, Lawrence H, Pala M, Mostafavi S, Battle A, Feghali-Bostwick C, Rosen G, Montgomery SB (2014) Transcriptome analysis reveals differential splicing events in IPF lung tissue. PLoS One 9:e92111PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Nishioka T, Onishi K, Shimojo Y, Matsusaka H, Ikeuchi M, Ide T, Tsutsui H, Hiroe M, Yoshida T, Imanaka-Yoshida K (2010) Tenascin-C may aggregate left ventricular remodeling and function after myocardial infarction. Am J Physiol Heart Circ Physiol 298:H1072–H1078PubMedCrossRefGoogle Scholar
  66. 66.
    Nishiyama T, Kii I, Kashima TG, Kikuchi Y, Ohazama A, Shimazaki M, Fukayama M, Kudo A (2011) Delayed re-epithelialization in periostin-deficient mice during cutaneous wound healing. PLoS One 4:e18410CrossRefGoogle Scholar
  67. 67.
    Noack S, Seiffart V, Willbold E, Laggies S, Winkel A, Shahab-Osterloh S, Florkemeier T, Hertwig F, Steinhoff C, Nuber UA, Gross G, Hoffmann A (2014) Periostin secreted by mesenchymal stem cells supports tendon formation in an ectopic mouse model. Stem Cell Develop 23:1844–1857CrossRefGoogle Scholar
  68. 68.
    O’Meara CC, Wamstad JA, Gladstone RA, Fomovsky GM, Butty VL, Shrikumar A, Gannon JB, Boyer LA, Lee RT (2015) Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration. Circ Res 116:804–815PubMedCrossRefGoogle Scholar
  69. 69.
    Okada T, Kawakita F, Nishikawa H, Nakano F, Liu L, Suzuki H (2018) Selective Toll-like receptor 4 antagonists acute blood-brain barrier disruption after subarachnoid hemorrhage in mice. Mol Neurobiol. PubMedCrossRefGoogle Scholar
  70. 70.
    Oshima A, Tanabe H, Yan T, Lowe GN, Glackin CA, Kudo A (2002) A novel mechanism for the regulation of osteoblast differentiation.: transcription of periostin, a member of the fasciclin I family, is regulated by the bHLH transcription factor, twist. J Cell Biochem 86:792–804CrossRefPubMedGoogle Scholar
  71. 71.
    Politz O, Gratchev A, McCourt PA, Schledzewski K, Guillot P, Johansson S, Svineng G, Franke P, Kannicht C, Kzhyshkowska J, Longati P, Velten FW, Johansson S, Goerdt S (2002) Stabilin-1 and -2 constitute a novel family of fasciclin-like hyaluronan receptor homologues. Biochem J 362:155–164PubMedPubMedCentralGoogle Scholar
  72. 72.
    Prakoura N, Chatziantoniou C (2017) Periostin and Discoidin Domain Receptor 1: new biomarkers or targets for therapy of renal disease. Front Med 4:52CrossRefGoogle Scholar
  73. 73.
    Rosselli-Murai LK, Almeida LO, Zagni C, Galindo-Moreno P, Padial-Molina M, Volk SL, Murai MJ, Rios HF, Squarize CH, Castilho RM (2013) Periostin responds to mechanical stress and tension by activating the MTOR signaling pathway. PLoS One 8:e83580PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Schwanekamp JA, Lorts A, Sargent MA, York AJ, Grimes KM, Fischesser DM, Gokey JJ, Whitsett JA, Conway SJ, Molkentin JD (2017) TGFB1 functions similar to periostin but is uniquely dispensable during cardiac injury. PLoS One 12:e0181945PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Seifert GJ (2018) Fascinating fasciclins: a surprisingly widespread family of proteins that mediate interactions between the cell exterior and the cell surface. Int J Mol Sci 19:1628PubMedCentralCrossRefGoogle Scholar
  76. 76.
    Shelton EL, Yutzey KE (2008) Twist 1 function in endocardial cushion cell proliferation, migration, and differentiation during heart valve development. Dev Biol 317:282–295PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Shimazaki M, Nakamura K, Kii I, Kashima T, Amizuka N, Li M, Saito M, Fukuda K, Nishiyama T, Kitajima S, Saga Y, Fukayama M, Sata M, Kudo A (2008) Periostin is essential for cardiac healing after acute myocardial infarction. J Exp Med 205:295–303PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Sidhu SS, Yuan S, Innes AL, Kerr S, Woodruff PG, Hou L, Muller SJ, Fahy JV (2010) Roles of epithelial cell-derived periostin in TGF-b activation, collagen production, and collagen gel elasticity in asthma. Proc Natl Acad Sci U S A 17:14170–14175CrossRefGoogle Scholar
  79. 79.
    Subramanian V, Meyer BI, Gruss P (1995) Disruption of the murine homeobox gene Cdx1 affects axial skeletal identities by altering the mesodermal expression domains of Hox genes. Cell 83:641–653PubMedCrossRefGoogle Scholar
  80. 80.
    Sugiura T, Takamatu S, Kudo A, Amann E (1995) Expression and characterization of murine osteoblast-specific factor 2 (OSF-2) in a baculovirus expression system. Protein Expr Purif 6:305–311PubMedCrossRefGoogle Scholar
  81. 81.
    Syx D, Guillemyn B, Symoens S, Sousa AB, Medeira A, Whiteford M, Hermanns-Le T, Coucke PJ, de Paepe A, Malfait F (2015) Defective proteolytic processing of fibrillar procollagens and prodecorin due to biallelic BMP1 mutations results in a severe, progressive form of Osteogenesis Imperfecta. J Bone Miner Res 30:1445–1456PubMedCrossRefGoogle Scholar
  82. 82.
    Takayama I, Kudo A (2012) Periostin in dental science. Jpn Dent Sci Rev 48:92–98CrossRefGoogle Scholar
  83. 83.
    Takayama G, Arima K, Kanaji T, Toda H, Shoji S, McKenzie AN, Nagai H, Hotokebuchi T, Izuhara K (2006) Periostin: a novel component of subepithelial fibrosis of bronchial asthma downstream of IL-4 and IL-13 signals. J Allergy Clin Immunol 118:98–104CrossRefPubMedGoogle Scholar
  84. 84.
    Takayama I, Tanabe H, Nishiyama T, Ito H, Amizuka N, Li M, Watanabe Y, Katsube K, Kii I, Kudo A (2017) Periostin is required for matricellular localization of CCN3 in periodontal ligament of mice. J Cell Commun Signal 11:5–13PubMedCrossRefGoogle Scholar
  85. 85.
    Takeda M, Takeyama K, Mantoku A, Chatani M, Kudo A (2015) Periostin function in fracture healing of medaka finray. 0-067 page 173 in Abstracts in the 33rd Annual Meeting of the Japanese Society for Bone and Mineral ResearchGoogle Scholar
  86. 86.
    Takeshita S, Kikuno R, Tezuka K, Amann E (1993) Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I. Biochem J 294:271–274PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Tanabe H, Takayama I, Nishiyama T, Shimazaki M, Kii I, Li M, Amizuka N, Katsube K, Kudo A (2010) Periostin associates with Notch 1 precursor to maintain Notch 1 expression under a stress condition in mouse cells. PLoS One 5:e12234PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Tanaka S, Maekawa A, Matsubara L, Imanishi A, Yano M, Roeder RG, Hasegawa N, Asano S, Ito M (2016) Periostin supports hematopoietic progenitor cells and niche-dependent myeloblastoma cells in vitro. Biochem Biophys Res Commun 478:1706–1712PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Tang Y, Liu L, Wang P, Chen D, Wu Z, Tang C (2017) Periostin promotes migration and osteogenic differentiation of human periodontal ligament mesenchymal stem cells via the Jun amino-terminal kinases (JNK) pathway under inflammatory conditions. Cell Prolif 2017:e12369CrossRefGoogle Scholar
  90. 90.
    Tao S, Kuhl M, Kuhl SJ (2011) Expression of periostin during Xenopus laevis embryogenesis. Dev Genes Evol 221:247–254PubMedCrossRefGoogle Scholar
  91. 91.
    van Vliet AI, van Alderwegen IE, Baelde HJ, Heer ED, Bruijn JA (2002) Fibronectin accumulation in glomerulosclerotic lesions: self-assembly sites and the heparin II binding domain. Kidney Int 61:481–489PubMedCrossRefGoogle Scholar
  92. 92.
    Wang J, Massoudi D, Ren Y, Muir AM, Harris SE, Greenspan DS, Feng JQ (2017) BMP1 and TLL1 are required for maintaining periodontal homeostasis. J Dent Res 96:578–585PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Wen W, Chau E, Jackson L, Elliott C, Daley TD, Hamilton DW (2010) TGF-β1 and FAK regulate periostin expression in PDL fibroblasts. J Dent Res 89:1439–1443PubMedCrossRefGoogle Scholar
  94. 94.
    Wu T, Ouyang G (2015) Periostin: a potent chemotactic factor for recruiting tumor-associated macrophage. Protein Cell 6:235–237PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Xiao S-M, Gao Y, Cheng C-L, Bow CH, Lau K-S, Sham PC, Tan KCB, Kung AWC (2012) Association of CDX1 binding site of peiostin gene with bone mineral density and vertebral fracture risk. Osteoporos Int 23:1877–1887PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Yamada S, Tauchi T, Awata T, Maeda K, Kajikawa T, Yanagita M, Murakami S (2014) Characterization of a novel periodontal ligament-specific periostin isoform. J Dent Res 93:891–897PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Yokota K, Kobayakawa K, Saito T, Hara M, Kijima K, Ohkawa Y, Harada A, Okazaki K, Ishihara K, Yoshida S, Kudo A, Iwamoto Y, Okada S (2017) Periostin promotes scar formation through the interaction between pericytes and infiltrating monocytes/macrophages after spinal cord injury. Am J Pathol 187:639–653PubMedCrossRefGoogle Scholar
  98. 98.
    Zeng J, Liu Z, Sun S, Xie J, Cao L, Lv P, Nie S, Zhang B, Xie B, Peng S, Jiang B (2018) Tumor-associated macrophages recruited by periostin in intrahepatic cholangiocarcinoma stem cells. Oncol Lett 15:8681–8686PubMedPubMedCentralGoogle Scholar
  99. 99.
    Zho W, Ke SQ, Huang Z, Flavahan W, Fang X, Paul J, Wu L, Sloan AE, McLendon RE, Li X, Rich JN, Bao S (2014) Periostin secreted by glioblastoma stem cells recruits M2 tumor-associated macrophages and promotes malignant growth. Nat Cell Biol 17:170–182CrossRefGoogle Scholar
  100. 100.
    Zinn K, McAllister L, Goodman CS (1988) Sequence analysis and neuronal expression of faciclin I in grasshopper and Drosophila. Cell 53:577–587PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.International FrontierTokyo Institute of TechnologyMeguro-ku, TokyoJapan
  2. 2.School of DentistryShowa UniversityTokyoJapan

Personalised recommendations