Advertisement

Periostin pp 207-210 | Cite as

Clinical Applications Targeting Periostin

  • Akira KudoEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1132)

Abstract

Since periostin is expressed and functioned in incredible diseases, clinical applications have been initiated to directly target periostin for inhibition or activation, or periostin expression is utilized to indicate the disease state or a marker for curing diseases, which will provide novel methods in clinical applications.

Keywords

Clinical application Incredible disease RNAi DNA aptamer Periostin antibody Lebrikizumab Osteoporosis Biomaterials Capsular contraction 

References

  1. 1.
    Bae H-S, Son H-Y, Lee JP, Chang H, Park J-U (2018) The role of periostin in capsule formation on silicone implants. Biomed Res Int 2018:1–10Google Scholar
  2. 2.
    Corren J, Lemanske RF, Hanania NA, Korenblat PE, Parsey MV, Arron JR et al (2011) Lebrikizumab treatment in adults with asthma. N Engl J Med 365:1088–1098CrossRefGoogle Scholar
  3. 3.
    Field S, Uyttenhove C, Stroobant V, Cheou P, Donckers D, Coutelier J-P, Simpson RT, Cummings MC, Saunus JM, Reid LE, Kustasovic JR, McNicol AM, Kim BR, Kim JH, Lakhani SR, Neville AM, Snick JV, Jat PS (2016) Novel highly specific anti-periostin antibodies uncover the functional importance of the fascilin 1-1 domain and highlight preferential expression of periostin in aggressive breast cancer. Int J Cancer 138:1959–1970CrossRefGoogle Scholar
  4. 4.
    Hoshino M, Ohtawa J, Akitsu K (2015) Effect of treatment with inhaled corticosteroid on serum periostin levels in asthma. Respirology 21:297–303CrossRefGoogle Scholar
  5. 5.
    Inaki R, Fujihara Y, Kudo A, Misawa M, Hikita A, Takato T, Hoshi K (2018) Periostin contributes to the maturation and shape retention of tissue-engineered cartilage. Sci Rep 8:11210CrossRefGoogle Scholar
  6. 6.
    Katial RK, Bensch GW, Busse WW, Chipps BE, Gerber JLCAN, Jacobs JS, Kraft M, Martin RJ, Nair P, Wechsler ME (2017) Changing paradigms in the treatment of severe asthma: the role of biologic therapies. J Allergy Clin Immunol Pract 5:S1–S14CrossRefGoogle Scholar
  7. 7.
    Kim BJ, Rhee Y, Kim CH, Baek KH, Min YK, Kim DY, Ahn SH, Kim H, Lee SH, Lee SY, Kang MI, Koh JM (2015) Plasma periostin associates significantly with non-vertebral but not vertebral fractures in postmenopausal women: clinical evidence for the different effects of periostin depending on the skeletal site. Bone 81:435–441CrossRefGoogle Scholar
  8. 8.
    Kimura T, Nojiri T, Hino J, Hosoda H, Miura K, Shintani Y, Inoue M, Zenitani M, Takabatake H, Miyazono M, Okumura M, Kangawa K (2016) C-type natriuretic peptide ameliorates pulmonary fibrosis by acting on lung fibroblasts in mice. Respir Res 17:19CrossRefGoogle Scholar
  9. 9.
    Kraft M (2011) Asthma phenotypes and interleukin-13--moving closer to personalized medicine. N Engl J Med 365:1141–1144CrossRefGoogle Scholar
  10. 10.
    Kudo A (2017) Introductory review: periostin-gene and protein structure. Cell Mol Life Sci 74:4259–4268.  https://doi.org/10.1007/s00018-017-2643-5 CrossRefGoogle Scholar
  11. 11.
    Kudo A, Kii I (2018) Periostin function in communication with extracellular matrices. J Cell Commun Signal 12:301–308.  https://doi.org/10.1007/s12079-017-0422-6 CrossRefGoogle Scholar
  12. 12.
    Lee YJ, Kim IS, Park S-A, Kim Y, Lee JE, Noh D-Y, Kim K-T, Ryu SH, Suh P-G (2013) Periostin-binding DNA adapter inhibits breast cancer growth and metastasis. Mol Ther 21:1004–1013CrossRefGoogle Scholar
  13. 13.
    Nakama T, Yoshida S, Ishikawa K, Kobayashi Y, Zhou Y, Nakao S, Sassa Y, Oshima Y, Takao K, Shimahara A, Yoshikawa K, Hamasaki T, Ohgi T, Hayashi H, Matsuda A, Kudo A, Nozaki M, Ogura Y, Kuroda M, Ishibashi T (2015) Inhibition of choroidal fibrovascular membrane formation by new class of RNA interference therapeutic agent targeting periostin. Gene Ther 22:127–137CrossRefGoogle Scholar
  14. 14.
    Nakama T, Yoshida S, Ishikawa K, Kubo Y, Kobayashi Y, Zhou Y, Nakao S, Hisatomi T, Ikeda Y, Takao K, Yoshikawa K, Matsuda A, Ono J, Ohta S, Izuhara K, Kudo A, Sonoda K, Ishibashi T (2017) Therapeutic effect of novel single-stranded RNAi agent targeting periostin in eyes with retinal neovascularization. Mol Ther Nucleic Acids 6:279–289CrossRefGoogle Scholar
  15. 15.
    Nam BY, Park JT, Kwon YE, Lee JP, Jung JH, Kim Y, Kim S, Park J, Um JE, Wu M, Han SH, Yoo T-H, Kang S-W (2017) Periostin-binding DNA aptamer treatment ameliorates peritoneal dialysis-induced peritoneal fibrosis. Mol Ther Nucleic Acids 17:396–407CrossRefGoogle Scholar
  16. 16.
    Parulekar AD, Kao CC, Diamant Z, Hanania NA (2018) Targeting the interleukin-4 and interleukin-13 pathways in severe asthma: current knowledge and future needs. Curr Opin Pulm Med 24:50–55CrossRefGoogle Scholar
  17. 17.
    Polizzotti BD, Arab S, Kuhn B (2012) Intrapericardial delivery of gelform enables the targeted delivery of periostin peptide after myocardial infarction by inducing fibrin clot formation. PLoS ONE 7:e36788CrossRefGoogle Scholar
  18. 18.
    Takai S, Yoshino M, Takao K, Yoshikawa K, Jin D (2017) Periostin antisense oligonucleotide prevents adhesion formation after surgery in mice. J Pharmacol Sci 133:30–69CrossRefGoogle Scholar
  19. 19.
    Taniyama Y, Katsuragi N, Sanada F, Azuma J, Iekushi K, Koibuchi N, Okayama K, Ikeda-Iwabu Y, Muratsu J, Otsu R, Rakugi H, Morishita R (2016) Selective blockade of periostin exon 17 preserves cardiac performance in acute myocadial infarction. Hypertension 67:356–361CrossRefGoogle Scholar
  20. 20.
    Tomaru A, Kobayashi T, Hinneh JA, Tonto PB, D’Alessandro-Gabazza CN, Fujimoto H, Fujiwara K, Takahashi Y, Ohnishi M, Yasuma T, Nishihama K, Yoshino M, Takao K, Toda M, Totoki T, Takei Y, Yoshikawa K, Taguchi O, Gabazza EC (2017) Oligonucleotide-targeting periostin ameliorates pulmonary fibrosis. Gene Ther 24:706–716CrossRefGoogle Scholar
  21. 21.
    Vico L, Rietbergen BV, Vilayphiou N, Linossier M-T, Locrelle H, Normand M, Zouch M, Gerbaix M, Bonnet N, Novikov V, Thomas T, Vassilieva G (2017) Cortical and trabecular bone microstructure did not recover at weight-bearing skeletal sites and progressively deteriorated at non-weight-bearing sites during the year following International Space Station missions. J Bone Miner Res 32:2010–2021CrossRefGoogle Scholar
  22. 22.
    Zhang T, Ma G, Zhang Y, Huo H, Zhao Y (2017) miR-599 inhibits proliferation and invasion of glioma by targeting periostin. Biotechnol Lett 39:1325–1333CrossRefGoogle Scholar
  23. 23.
    Zhu R, Zheng Y, Dirks NL, Vadhavkar S, Jin JY, Peng K, CTJ H, Olsson J, Matthews JG, Putnam WS (2017) Model-based clinical pharmacological profiling and exposure-response relationships of the efficacy and biomarker of lebrikizumab in patients with moderate-to-serve asthma. Pulm Pharmacol Ther 46:88–98CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.International FrontierTokyo Institute of TechnologyMeguro-ku, TokyoJapan
  2. 2.School of DentistryShowa UniversityTokyoJapan

Personalised recommendations