Advertisement

Periostin pp 113-124 | Cite as

Periostin in Eye Diseases

  • Shigeo YoshidaEmail author
  • Yumi Umeno
  • Masatoshi Haruta
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1132)

Abstract

The transparency of the eye can be disturbed by several eye diseases. It has recently been reported that periostin plays pivotal roles in the pathogenesis of several eye disease, such as diabetic retinopathy (DR), age-related macular degeneration (AMD), glaucoma, pterygia, corneal dystrophy, and chronic ocular allergic diseases. In these diseases, formation of fibro (vascular) tissue plays an important role. Gene expression profiling of human retinal fibro (vascular) membrane revealed significant up-regulation of periostin. The expression of periostin after environmental perturbations, including IL-4 and/or IL-13 induction, can alter normal physiological interactions among fibroblasts, macrophages and ECM protein in the eye. Modulating the expression of periostin by low-molecular weight compounds, antibodies or RNAi directed against the molecule could be a novel therapeutic strategy for inhibiting the progression of those periostin-involved eye diseases.

Keywords

Vitreoretinal disease Genome-wide gene expression profiling Proliferative diabetic retinopathy Proliferative vitreoretinopathy Age-related macular degeneration Fibrovascular membranes Epiretinal membranes Neovascularization Fibrosis Retina Choroid Cornea Conjunctiva Pterygia Glaucoma Corneal dystrophy Atopic keratoconjunctivitis IL-4 IL-13 Serum Tear Mouse model of oxygen-induced retinal neovascularization Mouse model of laser-induced choroidal neovascularization Single-stranded RNA interference 

Notes

Acknowledgements

We thank Drs. Shintaro Nakao, Keijiro Ishikawa, Takahito Nakama, Yoshiyuki Kobayashi and Yuki Kubo (Kyushu University) for their fruitful discussions. We also thank Ms. Chikako Nagashima and Natsu Mizumoto for her excellent technical assistance.

This work was supported in part by JSPS KAKENHI Grant Numbers 18 K09450 and Global Ophthalmology Awards Program from Bayer.

References

  1. 1.
    Asato R, Yoshida S, Ogura A et al (2013) Comparison of gene expression profile of epiretinal membranes obtained from eyes with proliferative vitreoretinopathy to that of secondary epiretinal membranes. PLoS One 8:e54191CrossRefGoogle Scholar
  2. 2.
    Banerjee S, Savant V, Scott RA et al (2007) Multiplex bead analysis of vitreous humor of patients with vitreoretinal disorders. Invest Ophthalmol Vis Sci 48:2203–2207CrossRefGoogle Scholar
  3. 3.
    Bloch SB, Lund-Andersen H, Sander B et al (2013) Subfoveal fibrosis in eyes with neovascular age-related macular degeneration treated with intravitreal ranibizumab. Am J Ophthalmol 156:116–124. e111CrossRefGoogle Scholar
  4. 4.
    Cho WG, Albuquerque RJ, Kleinman ME et al (2009) Small interfering RNA-induced TLR3 activation inhibits blood and lymphatic vessel growth. Proc Natl Acad Sci U S A 106:7137–7142CrossRefGoogle Scholar
  5. 5.
    Conway SJ, Molkentin JD (2008) Periostin as a heterofunctional regulator of cardiac development and disease. Curr Genomics 9:548–555CrossRefGoogle Scholar
  6. 6.
    Dangaria SJ, Ito Y, Walker C et al (2009) Extracellular matrix-mediated differentiation of periodontal progenitor cells. Differentiation 78:79–90CrossRefGoogle Scholar
  7. 7.
    Daniel E, Toth CA, Grunwald JE et al (2014) Risk of scar in the comparison of age-related macular degeneration treatments trials. Ophthalmology 121:656–666CrossRefGoogle Scholar
  8. 8.
    De Jong PT (2006) Age-related macular degeneration. N Engl J Med 355:1474–1485CrossRefGoogle Scholar
  9. 9.
    Di Girolamo N, Chui J, Coroneo MT et al (2004) Pathogenesis of pterygia: role of cytokines, growth factors, and matrix metalloproteinases. Prog Retin Eye Res 23:195–228CrossRefGoogle Scholar
  10. 10.
    Elbashir SM, Harborth J, Lendeckel W et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498CrossRefGoogle Scholar
  11. 11.
    Elner SG, Elner VM, Jaffe GJ et al (1995) Cytokines in proliferative diabetic retinopathy and proliferative vitreoretinopathy. Curr Eye Res 14:1045–1053CrossRefGoogle Scholar
  12. 12.
    Fujishima H, Okada N, Matsumoto K et al (2016) The usefulness of measuring tear periostin for the diagnosis and management of ocular allergic diseases. J Allergy Clin Immunol 138:459–467 e452CrossRefGoogle Scholar
  13. 13.
    Fujita Y, Takeshita F, Mizutani T et al (2013) A novel platform to enable inhaled naked RNAi medicine for lung cancer. Sci Rep 3:3325CrossRefGoogle Scholar
  14. 14.
    Hamasaki T, Suzuki H, Shirohzu H et al (2012) Efficacy of a novel class of RNA interference therapeutic agents. PLoS One 7:e42655CrossRefGoogle Scholar
  15. 15.
    Han KE, Choi SI, Kim TI et al (2016) Pathogenesis and treatments of TGFBI corneal dystrophies. Prog Retin Eye Res 50:67–88CrossRefGoogle Scholar
  16. 16.
    Harada C, Mitamura Y, Harada T (2006) The role of cytokines and trophic factors in epiretinal membranes: involvement of signal transduction in glial cells. Prog Retin Eye Res 25:149–164CrossRefGoogle Scholar
  17. 17.
    He S, Chen Y, Khankan R et al (2008) Connective tissue growth factor as a mediator of intraocular fibrosis. Invest Ophthalmol Vis Sci 49:4078–4088CrossRefGoogle Scholar
  18. 18.
    Hiscott PS, Grierson I, Mcleod D (1984) Retinal pigment epithelial cells in epiretinal membranes: an immunohistochemical study. Br J Ophthalmol 68:708–715CrossRefGoogle Scholar
  19. 19.
    Hiscott P, Wong D, Grierson I (2000) Challenges in ophthalmic pathology: the vitreoretinal membrane biopsy. Eye 14(Pt 4):549–559CrossRefGoogle Scholar
  20. 20.
    Ishikawa K, Yoshida S, Kadota K et al (2010) Gene expression profile of hyperoxic and hypoxic retinas in a mouse model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 51:4307–4319CrossRefGoogle Scholar
  21. 21.
    Ishikawa K, Yoshida S, Nakao S et al (2012) Bone marrow-derived monocyte lineage cells recruited by MIP-1beta promote physiological revascularization in mouse model of oxygen-induced retinopathy. Lab Investig 92:91–101CrossRefGoogle Scholar
  22. 22.
    Ishikawa K, Yoshida S, Nakao S et al (2014) Periostin promotes the generation of fibrous membranes in proliferative vitreoretinopathy. FASEB J 28:131–142CrossRefGoogle Scholar
  23. 23.
    Ishikawa K, Yoshida S, Kobayashi Y et al (2015) Microarray analysis of gene expression in fibrovascular membranes excised from patients with proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 56:932–946CrossRefGoogle Scholar
  24. 24.
    Kannabiran C, Klintworth GK (2006) TGFBI gene mutations in corneal dystrophies. Hum Mutat 27:615–625CrossRefGoogle Scholar
  25. 25.
    Kim BY, Olzmann JA, Choi SI et al (2009) Corneal dystrophy-associated R124H mutation disrupts TGFBI interaction with periostin and causes mislocalization to the lysosome. J Biol Chem 284:19580–19591CrossRefGoogle Scholar
  26. 26.
    Kirchhof B (2004) Strategies to influence PVR development. Graefes Arch Clin Exp Ophthalmol 242:699–703CrossRefGoogle Scholar
  27. 27.
    Kita T, Hata Y, Arita R et al (2008) Role of TGF-beta in proliferative vitreoretinal diseases and ROCK as a therapeutic target. Proc Natl Acad Sci U S A 105:17504–17509CrossRefGoogle Scholar
  28. 28.
    Kleinman ME, Yamada K, Takeda A et al (2008) Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452:591–597CrossRefGoogle Scholar
  29. 29.
    Kobayashi Y, Yoshida S, Nakama T et al (2015) Overexpression of CD163 in vitreous and fibrovascular membranes of patients with proliferative diabetic retinopathy: possible involvement of periostin. Br J Ophthalmol 99:451–456CrossRefGoogle Scholar
  30. 30.
    Kobayashi Y, Yoshida S, Zhou Y et al (2016a) Tenascin-C promotes angiogenesis in fibrovascular membranes in eyes with proliferative diabetic retinopathy. Mol Vis 22:436–445PubMedPubMedCentralGoogle Scholar
  31. 31.
    Kobayashi Y, Yoshida S, Zhou Y et al (2016b) Tenascin-C secreted by transdifferentiated retinal pigment epithelial cells promotes choroidal neovascularization via integrin alphaV. Lab Investig 96:1178–1188CrossRefGoogle Scholar
  32. 32.
    Kuo CH, Miyazaki D, Yakura K et al (2010) Role of periostin and interleukin-4 in recurrence of pterygia. Invest Ophthalmol Vis Sci 51:139–143CrossRefGoogle Scholar
  33. 33.
    Leiderman YI, Miller JW (2009) Proliferative vitreoretinopathy: pathobiology and therapeutic targets. Semin Ophthalmol 24:62–69CrossRefGoogle Scholar
  34. 34.
    Leonardi A, Bonini S (2013) Is visual function affected in severe ocular allergies? Curr Opin Allergy Clin Immunol 13:558–562CrossRefGoogle Scholar
  35. 35.
    Li G, Oparil S, Sanders JM et al (2006) Phosphatidylinositol-3-kinase signaling mediates vascular smooth muscle cell expression of periostin in vivo and in vitro. Atherosclerosis 188:292–300CrossRefGoogle Scholar
  36. 36.
    Liu W, Xu GZ, Jiang CH et al (2009) Expression of macrophage colony-stimulating factor (M-CSF) and its receptor in streptozotocin-induced diabetic rats. Curr Eye Res 34:123–133CrossRefGoogle Scholar
  37. 37.
    Malanchi I, Santamaria-Martinez A, Susanto E et al (2011) Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481:85–89CrossRefGoogle Scholar
  38. 38.
    Mantovani A, Biswas SK, Galdiero MR et al (2013) Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 229:176–185CrossRefGoogle Scholar
  39. 39.
    Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483CrossRefGoogle Scholar
  40. 40.
    Masuoka M, Shiraishi H, Ohta S et al (2012) Periostin promotes chronic allergic inflammation in response to Th2 cytokines. J Clin Invest 122:2590–2600CrossRefGoogle Scholar
  41. 41.
    Nakama T, Yoshida S, Ishikawa K et al (2015) Inhibition of choroidal fibrovascular membrane formation by new class of RNA interference therapeutic agent targeting periostin. Gene Ther 22:127–137CrossRefGoogle Scholar
  42. 42.
    Nakama T, Yoshida S, Ishikawa K et al (2016) Different roles played by periostin splice variants in retinal neovascularization. Exp Eye Res 153:133–140CrossRefGoogle Scholar
  43. 43.
    Nakama T, Yoshida S, Ishikawa K et al (2017) Therapeutic effect of novel single-stranded RNAi agent targeting Periostin in eyes with retinal neovascularization. Mol Ther Nucleic Acids 6:279–289CrossRefGoogle Scholar
  44. 44.
    O’reilly S (2013) Role of interleukin-13 in fibrosis, particularly systemic sclerosis. Biofactors 39:593–596CrossRefGoogle Scholar
  45. 45.
    Olsson AK, Dimberg A, Kreuger J et al (2006) VEGF receptor signalling – in control of vascular function. Nat Rev Mol Cell Biol 7:359–371CrossRefGoogle Scholar
  46. 46.
    Ontsuka K, Kotobuki Y, Shiraishi H et al (2012) Periostin, a matricellular protein, accelerates cutaneous wound repair by activating dermal fibroblasts. Exp Dermatol 21:331–336CrossRefGoogle Scholar
  47. 47.
    Pecot CV, Calin GA, Coleman RL et al (2011) RNA interference in the clinic: challenges and future directions. Nat Rev Cancer 11:59–67CrossRefGoogle Scholar
  48. 48.
    Pennock S, Rheaume MA, Mukai S et al (2011) A novel strategy to develop therapeutic approaches to prevent proliferative vitreoretinopathy. Am J Pathol 179:2931–2940CrossRefGoogle Scholar
  49. 49.
    Rios H, Koushik SV, Wang H et al (2005) Periostin null mice exhibit dwarfism, incisor enamel defects, and an early-onset periodontal disease-like phenotype. Mol Cell Biol 25:11131–11144CrossRefGoogle Scholar
  50. 50.
    Saint-Geniez M, Kurihara T, Sekiyama E et al (2009) An essential role for RPE-derived soluble VEGF in the maintenance of the choriocapillaris. Proc Natl Acad Sci U S A 106:18751–18756CrossRefGoogle Scholar
  51. 51.
    Schlingemann RO (2004) Role of growth factors and the wound healing response in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 242:91–101CrossRefGoogle Scholar
  52. 52.
    Shimazaki M, Nakamura K, Kii I et al (2008) Periostin is essential for cardiac healing after acute myocardial infarction. J Exp Med 205:295–303CrossRefGoogle Scholar
  53. 53.
    Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795CrossRefGoogle Scholar
  54. 54.
    Simo R, Carrasco E, Garcia-Ramirez M et al (2006) Angiogenic and antiangiogenic factors in proliferative diabetic retinopathy. Curr Diabetes Rev 2:71–98CrossRefGoogle Scholar
  55. 55.
    Sivaprasad S, Gupta B, Crosby-Nwaobi R et al (2012) Prevalence of diabetic retinopathy in various ethnic groups: a worldwide perspective. Surv Ophthalmol 57:347–370CrossRefGoogle Scholar
  56. 56.
    Snead DR, James S, Snead MP (2008) Pathological changes in the vitreoretinal junction 1: epiretinal membrane formation. Eye 22:1310–1317CrossRefGoogle Scholar
  57. 57.
    Snider P, Hinton RB, Moreno-Rodriguez RA et al (2008) Periostin is required for maturation and extracellular matrix stabilization of noncardiomyocyte lineages of the heart. Circ Res 102:752–760CrossRefGoogle Scholar
  58. 58.
    Stone EM, Mathers WD, Rosenwasser GO et al (1994) Three autosomal dominant corneal dystrophies map to chromosome 5q. Nat Genet 6:47–51CrossRefGoogle Scholar
  59. 59.
    Sunderkotter C, Beil W, Roth J et al (1991) Cellular events associated with inflammatory angiogenesis in the mouse cornea. Am J Pathol 138:931–939PubMedPubMedCentralGoogle Scholar
  60. 60.
    Tachibana T, Yoshida S, Kubo Y et al (2016) Reduced vitreal concentration of periostin after vitrectomy in patients with proliferative diabetic retinopathy. Acta Ophthalmol 94:e81–e82CrossRefGoogle Scholar
  61. 61.
    Takamura E, Uchio E, Ebihara N et al (2011) Japanese guideline for allergic conjunctival diseases. Allergol Int 60:191–203CrossRefGoogle Scholar
  62. 62.
    Takanashi M, Sudo K, Ueda S et al (2015) Novel types of small RNA exhibit sequence- and target-dependent angiogenesis suppression without activation of toll-like receptor 3 in an age-related macular degeneration (AMD) mouse model. Mol Ther Nucleic Acids 4:e258CrossRefGoogle Scholar
  63. 63.
    Wallace DM, Murphy-Ullrich JE, Downs JC et al (2014) The role of matricellular proteins in glaucoma. Matrix Biol 37:174–182CrossRefGoogle Scholar
  64. 64.
    Wallace DM, Pokrovskaya O, O’brien CJ (2015) The function of Matricellular proteins in the Lamina Cribrosa and trabecular meshwork in Glaucoma. J Ocul Pharmacol Ther 31:386–395CrossRefGoogle Scholar
  65. 65.
    Yang Z, Stratton C, Francis PJ et al (2008) Toll-like receptor 3 and geographic atrophy in age-related macular degeneration. N Engl J Med 359:1456–1463CrossRefGoogle Scholar
  66. 66.
    Yoshida S (2014) Identification of molecular targets for intraocular proliferative diseases using genomicapproaches. J Jpn Ophthalmol Soc 118:241–282Google Scholar
  67. 67.
    Yoshida A, Yoshida S, Ishibashi T et al (1999) Intraocular neovascularization. Histol Histopathol 14:1287–1294PubMedGoogle Scholar
  68. 68.
    Yoshida S, Yoshida A, Ishibashi T et al (2003) Role of MCP-1 and MIP-1alpha in retinal neovascularization during postischemic inflammation in a mouse model of retinal neovascularization. J Leukoc Biol 73:137–144CrossRefGoogle Scholar
  69. 69.
    Yoshida S, Ishikawa K, Matsumoto T et al (2010a) Reduced concentrations of angiogenesis-related factors in vitreous after vitrectomy in patients with proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 248:799–804CrossRefGoogle Scholar
  70. 70.
    Yoshida S, Ogura A, Ishikawa K et al (2010b) Gene expression profile of fibrovascular membranes from patients with proliferative diabetic retinopathy. Br J Ophthalmol 94:795–801CrossRefGoogle Scholar
  71. 71.
    Yoshida S, Ishikawa K, Asato R et al (2011) Increased expression of periostin in vitreous and fibrovascular membranes obtained from patients with proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 52:5670–5678CrossRefGoogle Scholar
  72. 72.
    Yoshida S, Nakama T, Ishikawa K et al (2012) Antiangiogenic shift in vitreous after vitrectomy in patients with proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 53:6997–7003CrossRefGoogle Scholar
  73. 73.
    Yoshida S, Kobayashi Y, Nakama T et al (2015a) Increased expression of M-CSF and IL-13 in vitreous of patients with proliferative diabetic retinopathy: implications for M2 macrophage-involving fibrovascular membrane formation. Br J Ophthalmol 99:629–634CrossRefGoogle Scholar
  74. 74.
    Yoshida S, Kubo Y, Kobayashi Y et al (2015b) Increased vitreous concentrations of MCP-1 and IL-6 after vitrectomy in patients with proliferative diabetic retinopathy: possible association with postoperative macular oedema. Br J Ophthalmol 99(7):960–966CrossRefGoogle Scholar
  75. 75.
    Yoshida S, Nakama T, Ishikawa K et al (2017) Periostin in vitreoretinal diseases. Cell Mol Life Sci 74:4329–4337CrossRefGoogle Scholar
  76. 76.
    Zhao Y, Wang S, Sorenson CM et al (2013) Cyp1b1 mediates periostin regulation of trabecular meshwork development by suppression of oxidative stress. Mol Cell Biol 33:4225–4240CrossRefGoogle Scholar
  77. 77.
    Zhou Y, Yoshida S, Nakao S et al (2015) M2 macrophages enhance pathological neovascularization in the mouse model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 56:4767–4777CrossRefGoogle Scholar
  78. 78.
    Zurawski SM, Vega F Jr, Huyghe B et al (1993) Receptors for interleukin-13 and interleukin-4 are complex and share a novel component that functions in signal transduction. EMBO J 12:2663–2670CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of OphthalmologyKurume University School of MedicineKurumeJapan

Personalised recommendations