Advertisement

Periostin pp 99-112 | Cite as

Periostin in the Kidney

  • Darren P. WallaceEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1132)

Abstract

Periostin is a matricellular protein that is expressed in several tissues during embryonic development; however, its expression in adults is mostly restricted to collagen-rich connective tissues. Periostin is expressed only briefly during kidney development, but it is not normally detected in the adult kidney. Recent evidence has revealed that periostin is aberrantly expressed in several forms of chronic kidney disease (CKD), and that its expression correlates with the degree of interstitial fibrosis and the decline in renal function. Polycystic kidney disease (PKD), a genetic disorder, is characterized by the formation of numerous fluid-filled cysts in the kidneys. Periostin is secreted by the cyst epithelial cells and accumulates within the extracellular matrix adjacent to the cysts. In PKD mice, periostin overexpression accelerates cyst growth and contributes to structural changes in the kidneys, including interstitial fibrosis. Recent evidence suggests that periostin is a tissue repair molecule; however, its role in repair following acute kidney injury has not been investigated. It is thought that persistent expression of this protein in CKD contributes importantly to tubulointerstitial fibrosis and the progressive decline in renal function. Future studies to define the diverse actions of periostin during kidney injury may lead to effective therapies to slow PKD progression and possibly prevent the development of CKD. This chapter reviews the current literature on the expression of periostin in PKD and other forms of CKD, mechanisms for periostin stimulated cyst growth, its potential role in extracellular matrix production and renal fibrosis, and the evidence for periostin as a novel biomarker for kidney disease.

Keywords

Matricellular proteins Polycystic kidney disease Chronic kidney disease Integrin signaling Renal fibrosis 

References

  1. 1.
    Bao S, Ouyang G, Bai X, Huang Z, Ma C, Liu M, Shao R, Anderson RM, Rich JN, Wang XF (2004) Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell 5:329–339PubMedCrossRefGoogle Scholar
  2. 2.
    Baril P, Gangeswaran R, Mahon PC, Caulee K, Kocher HM, Harada T, Zhu M, Kalthoff H, Crnogorac-Jurcevic T, Lemoine NR (2007) Periostin promotes invasiveness and resistance of pancreatic cancer cells to hypoxia-induced cell death: role of the beta4 integrin and the PI3k pathway. Oncogene 26:2082–2094PubMedCrossRefGoogle Scholar
  3. 3.
    Bell PD, Fitzgibbon W, Sas K, Stenbit AE, Amria M, Houston A, Reichert R, Gilley S, Siegal GP, Bissler J, Bilgen M, Chou PC, Guay-Woodford L, Yoder B, Haycraft CJ, Siroky B (2011) Loss of primary cilia upregulates renal hypertrophic signaling and promotes cystogenesis. J Am Soc Nephrol 22:839–848PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Butcher JT, Norris RA, Hoffman S, Mjaatvedt CH, Markwald RR (2007) Periostin promotes atrioventricular mesenchyme matrix invasion and remodeling mediated by integrin signaling through Rho/PI 3-kinase. Dev Biol 302:256–266PubMedCrossRefGoogle Scholar
  5. 5.
    Calvet JP (1993) Polycystic kidney disease: primary extracellular matrix abnormality or defective cellular differentiation? Kidney Int 43:101–108PubMedCrossRefGoogle Scholar
  6. 6.
    Chang-Panesso M, Humphreys BD (2017) Cellular plasticity in kidney injury and repair. Nat Rev Nephrol 13:39–46PubMedCrossRefGoogle Scholar
  7. 7.
    Chea SW, Lee KB (2009) TGF-beta mediated epithelial-mesenchymal transition in autosomal dominant polycystic kidney disease. Yonsei Med J 50:105–111PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Cobo T, Viloria CG, Solares L, Fontanil T, Gonzalez-Chamorro E, De Carlos F, Cobo J, Cal S, Obaya AJ (2016) Role of periostin in adhesion and migration of bone remodeling cells. PLoS One 11:e0147837PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Conway SJ, Molkentin JD (2008) Periostin as a heterofunctional regulator of cardiac development and disease. Curr Genomics 9:548–555PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Cowley BD Jr, Smardo FL Jr, Grantham JJ, Calvet JP (1987) Elevated c-myc protooncogene expression in autosomal recessive polycystic kidney disease. Proc Natl Acad Sci U S A 84:8394–8398PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Dorn GWII (2007) Periostin and myocardial repair, regeneration, and recovery. N Engl J Med 357:1552–1554PubMedCrossRefGoogle Scholar
  12. 12.
    Eddy AA (2011) Overview of the cellular and molecular basis of kidney fibrosis. Kidney Int Suppl 4:2–8, 2014CrossRefGoogle Scholar
  13. 13.
    Francois H, Chatziantoniou C (2018) Renal fibrosis: recent translational aspects. Matrix Biol 68–69:318–332PubMedCrossRefGoogle Scholar
  14. 14.
    Frangogiannis NG (2012) Matricellular proteins in cardiac adaptation and disease. Physiol Rev 92:635–688PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Fukuda K, Gupta S, Chen K, Wu C, Qin J (2009) The pseudoactive site of ILK is essential for its binding to alpha-Parvin and localization to focal adhesions. Mol Cell 36:819–830PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Gillan L, Matei D, Fishman DA, Gerbin CS, Karlan BY, Chang DD (2002) Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. Cancer Res 62:5358–5364PubMedGoogle Scholar
  17. 17.
    Grande MT, Sanchez-Laorden B, Lopez-Blau C, De Frutos CA, Boutet A, Arevalo M, Rowe RG, Weiss SJ, Lopez-Novoa JM, Nieto MA (2015) Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med 21:989–997PubMedCrossRefGoogle Scholar
  18. 18.
    Grantham JJ (2003) Polycystic kidney disease. Sci Med 9:128–139Google Scholar
  19. 19.
    Grantham JJ (1997) Polycystic kidney disease: huge kidneys, huge problems, huge progress. Trans Am Clin Climatol Assoc 108:165–170; discussion 170-162PubMedPubMedCentralGoogle Scholar
  20. 20.
    Guerrot D, Dussaule JC, Mael-Ainin M, Xu-Dubois YC, Rondeau E, Chatziantoniou C, Placier S (2012) Identification of periostin as a critical marker of progression/reversal of hypertensive nephropathy. PLoS One 7:e31974PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Hannigan GE, Leung-Hagesteijn C, Fitz-Gibbon L, Coppolino MG, Radeva G, Filmus J, Bell JC, Dedhar S (1996) Regulation of cell adhesion and anchorage-dependent growth by a new beta 1-integrin-linked protein kinase. Nature 379:91–96PubMedCrossRefGoogle Scholar
  22. 22.
    Happe H, Leonhard WN, van der Wal A, van de Water B, Lantinga-van Leeuwen IS, Breuning MH, de Heer E, Peters DJ (2009) Toxic tubular injury in kidneys from Pkd1-deletion mice accelerates cystogenesis accompanied by dysregulated planar cell polarity and canonical Wnt signaling pathways. Hum Mol Genet 18:2532–2542PubMedCrossRefGoogle Scholar
  23. 23.
    Hassane S, Leonhard WN, van der Wal A, Hawinkels LJ, Lantinga-van Leeuwen IS, ten Dijke P, Breuning MH, de Heer E, Peters DJ (2010) Elevated TGFbeta-Smad signalling in experimental Pkd1 models and human patients with polycystic kidney disease. J Pathol 222:21–31PubMedGoogle Scholar
  24. 24.
    Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H, Toyama Y, Bonewald LF, Kudo A (1999) Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res 14:1239–1249CrossRefPubMedGoogle Scholar
  25. 25.
    Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, McMahon AP, Duffield JS (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176:85–97PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Ito T, Suzuki A, Imai E, Horimoto N, Ohnishi T, Daikuhara Y, Hori M (2002) Tornado extraction: a method to enrich and purify RNA from the nephrogenic zone of the neonatal rat kidney. Kidney Int 62:763–769PubMedCrossRefGoogle Scholar
  27. 27.
    Jackson-Boeters L, Wen W, Hamilton DW (2009) Periostin localizes to cells in normal skin, but is associated with the extracellular matrix during wound repair. J Cell Commun Signal 3:125–133PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kang HM, Ahn SH, Choi P, Ko YA, Han SH, Chinga F, Park AS, Tao J, Sharma K, Pullman J, Bottinger EP, Goldberg IJ, Susztak K (2015) Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med 21:37–46PubMedCrossRefGoogle Scholar
  29. 29.
    Kanno A, Satoh K, Masamune A, Hirota M, Kimura K, Umino J, Hamada S, Satoh A, Egawa S, Motoi F, Unno M, Shimosegawa T (2008) Periostin, secreted from stromal cells, has biphasic effect on cell migration and correlates with the epithelial to mesenchymal transition of human pancreatic cancer cells. Int J Cancer 122:2707–2718PubMedCrossRefGoogle Scholar
  30. 30.
    Kudo A (2011) Periostin in fibrillogenesis for tissue regeneration: periostin actions inside and outside the cell. Cell Mol Life Sci 68:3201–3207PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Kudo Y, Siriwardena BS, Hatano H, Ogawa I, Takata T (2007) Periostin: novel diagnostic and therapeutic target for cancer. Histol Histopathol 22:1167–1174PubMedGoogle Scholar
  32. 32.
    Kuhn B, del Monte F, Hajjar RJ, Chang YS, Lebeche D, Arab S, Keating MT (2007) Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med 13:962–969PubMedCrossRefGoogle Scholar
  33. 33.
    Laczko R, Szauter KM, Jansen MK, Hollosi P, Muranyi M, Molnar J, Fong KS, Hinek A, Csiszar K (2007) Active lysyl oxidase (LOX) correlates with focal adhesion kinase (FAK)/paxillin activation and migration in invasive astrocytes. Neuropathol Appl Neurobiol 33:631–643PubMedCrossRefGoogle Scholar
  34. 34.
    Lee M, Katerelos M, Gleich K, Galic S, Kemp BE, Mount PF, Power DA (2018) Phosphorylation of acetyl-CoA carboxylase by AMPK reduces renal fibrosis and is essential for the anti-fibrotic effect of metformin. J Am Soc Nephrol 29:2326–2336PubMedCrossRefGoogle Scholar
  35. 35.
    Li G, Oparil S, Sanders JM, Zhang L, Dai M, Chen LB, Conway SJ, McNamara CA, Sarembock IJ (2006) Phosphatidylinositol-3-kinase signaling mediates vascular smooth muscle cell expression of periostin in vivo and in vitro. Atherosclerosis 188:292–300PubMedCrossRefGoogle Scholar
  36. 36.
    Lindner V, Wang Q, Conley BA, Friesel RE, Vary CP (2005) Vascular injury induces expression of periostin: implications for vascular cell differentiation and migration. Arterioscler Thromb Vasc Biol 25:77–83PubMedCrossRefGoogle Scholar
  37. 37.
    Litvin J, Zhu S, Norris R, Markwald R (2005) Periostin family of proteins: therapeutic targets for heart disease. Anat Rec A Discov Mol Cell Evol Biol 287:1205–1212PubMedCrossRefGoogle Scholar
  38. 38.
    Liu Y (2011) Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 7:684–696PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Mackensen-Haen S, Bader R, Grund KE, Bohle A (1981) Correlations between renal cortical interstitial fibrosis, atrophy of the proximal tubules and impairment of the glomerular filtration rate. Clin Nephrol 15:167–171PubMedGoogle Scholar
  40. 40.
    Mael-Ainin M, Abed A, Conway SJ, Dussaule J-C, Chatziantoniou C (2014) Inhibition of periostin expression protects against the development of renal inflammation and fibrosis. J Am Soc Nephrol 25:1724PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Malas TB, Formica C, Leonhard WN, Rao P, Granchi Z, Roos M, Peters DJ, t Hoen PA (2017) Meta-analysis of polycystic kidney disease expression profiles defines strong involvement of injury repair processes. Am J Physiol Ren Physiol 312:F806–F817CrossRefGoogle Scholar
  42. 42.
    Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Maruhashi T, Kii I, Saito M, Kudo A (2010) Interaction between periostin and BMP-1 promotes proteolytic activation of lysyl oxidase. J Biol Chem 285:13294–13303PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Morra L, Moch H (2011) Periostin expression and epithelial-mesenchymal transition in cancer: a review and an update. Virchows Arch 459:465–475PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Morra L, Rechsteiner M, Casagrande S, Duc Luu V, Santimaria R, Diener PA, Sulser T, Kristiansen G, Schraml P, Moch H, Soltermann A (2011) Relevance of periostin splice variants in renal cell carcinoma. Am J Pathol 179:1513–1521PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Mosher DF, Johansson MW, Gillis ME, Annis DS (2015) Periostin and TGF-beta-induced protein: two peas in a pod? Crit Rev Biochem Mol Biol 50:427–439PubMedPubMedCentralGoogle Scholar
  47. 47.
    Moskowitz DW, Bonar SL, Liu W, Sirgi CF, Marcus MD, Clayman RV (1995) Epidermal growth factor precursor is present in a variety of human renal cyst fluids. J Urol 153:578–583PubMedCrossRefGoogle Scholar
  48. 48.
    Naik PK, Bozyk PD, Bentley JK, Popova AP, Birch CM, Wilke CA, Fry CD, White ES, Sisson TH, Tayob N, Carnemolla B, Orecchia P, Flaherty KR, Hershenson MB, Murray S, Martinez FJ, Moore BB, Investigators C (2012) Periostin promotes fibrosis and predicts progression in patients with idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 303:L1046–L1056PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Nath KA (1992) Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis 20:1–17PubMedCrossRefGoogle Scholar
  50. 50.
    Norman J (2011) Fibrosis and progression of autosomal dominant polycystic kidney disease (ADPKD). Biochim Biophys Acta 1812:1327–1336PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Norris RA, Damon B, Mironov V, Kasyanov V, Ramamurthi A, Moreno-Rodriguez R, Trusk T, Potts JD, Goodwin RL, Davis J, Hoffman S, Wen X, Sugi Y, Kern CB, Mjaatvedt CH, Turner DK, Oka T, Conway SJ, Molkentin JD, Forgacs G, Markwald RR (2007) Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. J Cell Biochem 101:695–711PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Norris RA, Moreno-Rodriguez R, Hoffman S, Markwald RR (2009) The many facets of the matricelluar protein periostin during cardiac development, remodeling, and pathophysiology. J Cell Commun Signal 3:275–286PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Okamoto H, Imanaka-Yoshida K (2012) Matricellular proteins: new molecular targets to prevent heart failure. Cardiovasc Ther 30:e198–e209PubMedCrossRefGoogle Scholar
  54. 54.
    Olsan EE, West JD, Torres JA, Doerr N, Weimbs T (2018) Identification of targets of IL-13 and STAT6 signaling in polycystic kidney disease. Am J Physiol Ren Physiol 315:F86–F96CrossRefGoogle Scholar
  55. 55.
    Orellana SA, Sweeney WE, Neff CD, Avner ED (1995) Epidermal growth factor receptor expression is abnormal in murine polycystic kidney. Kidney Int 47:490–499PubMedCrossRefGoogle Scholar
  56. 56.
    Patel V, Li L, Cobo-Stark P, Shao X, Somlo S, Lin F, Igarashi P (2008) Acute kidney injury and aberrant planar cell polarity induce cyst formation in mice lacking renal cilia. Hum Mol Genet 17:1578–1590PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Qin J, Wu C (2012) ILK: a pseudokinase in the center stage of cell-matrix adhesion and signaling. Curr Opin Cell Biol 24:607–613PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Raman A, Parnell SC, Zhang Y, Reif GA, Dai Y, Khanna A, Daniel E, White C, Vivian JL, Wallace DP (2018) Periostin overexpression in collecting ducts accelerates renal cyst growth and fibrosis in polycystic kidney disease. Am J Physiol Ren Physiol 315:F1695–F1707CrossRefGoogle Scholar
  59. 59.
    Raman A, Reif GA, Dai Y, Khanna A, Li X, Astleford L, Parnell SC, Calvet JP, Wallace DP (2017) Integrin-linked kinase signaling promotes cyst growth and fibrosis in polycystic kidney disease. J Am Soc Nephrol 28:2708PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Rankin CA, Grantham JJ, Calvet JP (1992) C-fos expression is hypersensitive to serum-stimulation in cultured cystic kidney cells from the C57BL/6J-cpk mouse. J Cell Physiol 152:578–586PubMedCrossRefGoogle Scholar
  61. 61.
    Reif GA, Yamaguchi T, Nivens E, Fujiki H, Pinto CS, Wallace DP (2011) Tolvaptan inhibits ERK-dependent cell proliferation, Cl(−) secretion, and in vitro cyst growth of human ADPKD cells stimulated by vasopressin. Am J Physiol Ren Physiol 301:F1005–F1013CrossRefGoogle Scholar
  62. 62.
    Rios H, Koushik SV, Wang H, Wang J, Zhou HM, Lindsley A, Rogers R, Chen Z, Maeda M, Kruzynska-Frejtag A, Feng JQ, Conway SJ (2005) periostin null mice exhibit dwarfism, incisor enamel defects, and an early-onset periodontal disease-like phenotype. Mol Cell Biol 25:11131–11144PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ruan K, Bao S, Ouyang G (2009) The multifaceted role of periostin in tumorigenesis. Cell Mol Life Sci 66:2219–2230PubMedCrossRefGoogle Scholar
  64. 64.
    Satirapoj B (2018) Tubulointerstitial biomarkers for diabetic nephropathy. J Diabetes Res 2018:2852398PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Satirapoj B, Tassanasorn S, Charoenpitakchai M, Supasyndh O (2015) Periostin as a tissue and urinary biomarker of renal injury in type 2 diabetes mellitus. PLoS One 10:e0124055PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Satirapoj B, Wang Y, Chamberlin MP, Dai T, LaPage J, Phillips L, Nast CC, Adler SG (2012) Periostin: novel tissue and urinary biomarker of progressive renal injury induces a coordinated mesenchymal phenotype in tubular cells. Nephrol Dial Transplant 27:2702–2711PubMedCrossRefGoogle Scholar
  67. 67.
    Sen K, Lindenmeyer MT, Gaspert A, Eichinger F, Neusser MA, Kretzler M, Segerer S, Cohen CD (2011) Periostin is induced in glomerular injury and expressed de novo in interstitial renal fibrosis. Am J Pathol 179:1756–1767PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Shao R, Bao S, Bai X, Blanchette C, Anderson RM, Dang T, Gishizky ML, Marks JR, Wang XF (2004) Acquired expression of periostin by human breast cancers promotes tumor angiogenesis through up-regulation of vascular endothelial growth factor receptor 2 expression. Mol Cell Biol 24:3992–4003PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Shillingford JM, Murcia NS, Larson CH, Low SH, Hedgepeth R, Brown N, Flask CA, Novick AC, Goldfarb DA, Kramer-Zucker A, Walz G, Piontek KB, Germino GG, Weimbs T (2006) The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci U S A 103:5466–5471PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Song X, Di Giovanni V, He N, Wang K, Ingram A, Rosenblum ND, Pei Y (2009) Systems biology of autosomal dominant polycystic kidney disease (ADPKD): computational identification of gene expression pathways and integrated regulatory networks. Hum Mol Genet 18:2328–2343PubMedCrossRefGoogle Scholar
  71. 71.
    Sorocos K, Kostoulias X, Cullen-McEwen L, Hart AH, Bertram JF, Caruana G (2011) Expression patterns and roles of periostin during kidney and ureter development. J Urol 186:1537–1544PubMedCrossRefGoogle Scholar
  72. 72.
    Takakura A, Contrino L, Zhou X, Bonventre JV, Sun Y, Humphreys BD, Zhou J (2009) Renal injury is a third hit promoting rapid development of adult polycystic kidney disease. Hum Mol Genet 18:2523–2531PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Takayama G, Arima K, Kanaji T, Toda S, Tanaka H, Shoji S, McKenzie AN, Nagai H, Hotokebuchi T, Izuhara K (2006) Periostin: a novel component of subepithelial fibrosis of bronchial asthma downstream of IL-4 and IL-13 signals. J Allergy Clin Immunol 118:98–104PubMedCrossRefGoogle Scholar
  74. 74.
    Takeshita S, Kikuno R, Tezuka K, Amann E (1993) Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I. Biochem J 294(Pt 1):271–278PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Tao Y, Kim J, Schrier RW, Edelstein CL (2005) Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J Am Soc Nephrol 16:46–51PubMedCrossRefGoogle Scholar
  76. 76.
    Tee AR (2018) The target of rapamycin and mechanisms of cell growth. Int J Mol Sci 19:880PubMedCentralCrossRefGoogle Scholar
  77. 77.
    Torres VE, Boletta A, Chapman A, Gattone V, Pei Y, Qian Q, Wallace DP, Weimbs T, Wuthrich RP (2010) Prospects for mTOR inhibitor use in patients with polycystic kidney disease and hamartomatous diseases. Clin J Am Soc Nephrol 5:1312–1329PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Vijayakumar S, Dang S, Marinkovich MP, Lazarova Z, Yoder B, Torres VE, Wallace DP (2014) Aberrant expression of laminin-332 promotes cell proliferation and cyst growth in ARPKD. Am J Physiol Ren Physiol 306:F640–F654CrossRefGoogle Scholar
  79. 79.
    Wahl PR, Serra AL, Le Hir M, Molle KD, Hall MN, Wuthrich RP (2006) Inhibition of mTOR with sirolimus slows disease progression in Han: SPRD rats with autosomal dominant polycystic kidney disease (ADPKD). Nephrol Dial Transplant 21:598–604PubMedCrossRefGoogle Scholar
  80. 80.
    Walker JT, McLeod K, Kim S, Conway SJ, Hamilton DW (2016) Periostin as a multifunctional modulator of the wound healing response. Cell Tissue Res 365:453–465PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Wallace DP (2011) Cyclic AMP-mediated cyst expansion. Biochim Biophys Acta 1812:1291–1300PubMedCrossRefGoogle Scholar
  82. 82.
    Wallace DP, Grantham JJ, Sullivan LP (1996) Chloride and fluid secretion by cultured human polycystic kidney cells. Kidney Int 50:1327–1336PubMedCrossRefGoogle Scholar
  83. 83.
    Wallace DP, Quante MT, Reif GA, Nivens E, Ahmed F, Hempson SJ, Blanco G, Yamaguchi T (2008) Periostin induces proliferation of human autosomal dominant polycystic kidney cells through alphaV-integrin receptor. Am J Physiol Ren Physiol 295:F1463–F1471CrossRefGoogle Scholar
  84. 84.
    Wallace DP, White C, Savinkova L, Nivens E, Reif GA, Pinto CS, Raman A, Parnell SC, Conway SJ, Fields TA (2014) Periostin promotes renal cyst growth and interstitial fibrosis in polycystic kidney disease. Kidney Int 85:845–854PubMedCrossRefGoogle Scholar
  85. 85.
    Wang X, Wu Y, Ward CJ, Harris PC, Torres VE (2008) Vasopressin directly regulates cyst growth in polycystic kidney disease. J Am Soc Nephrol 19:102–108PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Watanabe T, Yasue A, Fujihara S, Tanaka E (2012) PERIOSTIN regulates MMP-2 expression via the alphavbeta3 integrin/ERK pathway in human periodontal ligament cells. Arch Oral Biol 57:52–59PubMedCrossRefGoogle Scholar
  87. 87.
    Weimbs T (2007) Polycystic kidney disease and renal injury repair: common pathways, fluid flow, and the function of polycystin-1. Am J Physiol Ren Physiol 293:F1423–F1432CrossRefGoogle Scholar
  88. 88.
    Weimbs T (2006) Regulation of mTOR by polycystin-1: is polycystic kidney disease a case of futile repair? Cell Cycle 5:2425–2429PubMedCrossRefGoogle Scholar
  89. 89.
    Weimbs T, Olsan EE, Talbot JJ (2013) Regulation of STATs by polycystin-1 and their role in polycystic kidney disease. JAKSTAT 2:e23650PubMedPubMedCentralGoogle Scholar
  90. 90.
    Wickstrom SA, Lange A, Montanez E, Fassler R (2010) The ILK/PINCH/parvin complex: the kinase is dead, long live the pseudokinase! EMBO J 29:281–291PubMedCrossRefGoogle Scholar
  91. 91.
    Wilson PD, Hreniuk D, Gabow PA (1992) Abnormal extracellular matrix and excessive growth of human adult polycystic kidney disease epithelia. J Cell Physiol 150:360–369PubMedCrossRefGoogle Scholar
  92. 92.
    Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484PubMedCrossRefGoogle Scholar
  93. 93.
    Yamaguchi T, Pelling JC, Ramaswamy NT, Eppler JW, Wallace DP, Nagao S, Rome LA, Sullivan LP, Grantham JJ (2000) cAMP stimulates the in vitro proliferation of renal cyst epithelial cells by activating the extracellular signal-regulated kinase pathway. Kidney Int 57:1460–1471PubMedCrossRefGoogle Scholar
  94. 94.
    Yamaguchi T, Wallace DP, Magenheimer BS, Hempson SJ, Grantham JJ, Calvet JP (2004) Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype. J Biol Chem 279:40419–40430PubMedCrossRefGoogle Scholar
  95. 95.
    Zhao S, Wu H, Xia W, Chen X, Zhu S, Zhang S, Shao Y, Ma W, Yang D, Zhang J (2014) Periostin expression is upregulated and associated with myocardial fibrosis in human failing hearts. J Cardiol 63:373–378PubMedCrossRefGoogle Scholar
  96. 96.
    Zheng QM, Lu JJ, Zhao J, Wei X, Wang L, Liu PS (2016) Periostin facilitates the epithelial-mesenchymal transition of endometrial epithelial cells through ILK-Akt signaling pathway. Biomed Res Int 2016:9842619PubMedPubMedCentralGoogle Scholar
  97. 97.
    Zhou D, Liu Y (2016) Therapy for kidney fibrosis: is the Src kinase a potential target? Kidney Int 89:12–14PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Zhu M, Fejzo MS, Anderson L, Dering J, Ginther C, Ramos L, Gasson JC, Karlan BY, Slamon DJ (2010) Periostin promotes ovarian cancer angiogenesis and metastasis. Gynecol Oncol 119:337–344PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Departments of Internal Medicine and Molecular and Integrative Physiology, and The Jared Grantham Kidney InstituteUniversity of Kansas Medical CenterKansas CityUSA

Personalised recommendations