Periostin pp 89-98 | Cite as

Involvement of Periostin in Skin Function and the Pathogenesis of Skin Diseases

  • Yutaka KuwatsukaEmail author
  • Hiroyuki Murota
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1132)


Skin is a large organ that is susceptible to damage by external forces, chronic inflammation, and autoimmune reactions. In general, tissue damage causes alterations in both the configuration and type of cells in lesional skin. This phenomenon, called tissue remodeling, is a universal biological response elicited by programmed cell death, inflammation, immune disorders, and tumorigenic, tumor proliferative, and cytoreductive activity. During this process, changes in the components that comprise the extracellular matrix are required to provide an environment that facilitates tissue remodeling. Among these extracellular matrix components, periostin (a glycoprotein secreted predominantly by dermal fibroblasts) has attracted much attention. In normal skin, periostin localizes mainly in the papillary dermis and basement membrane of the epidermis. However, it is expressed at higher levels in the dermis of lesional skin of those with atopic dermatitis, scars, systemic/limited scleroderma, melanoma, and cutaneous T cell lymphoma; expression is also increased by damage caused by allergic/autoimmune responses. Furthermore, periostin induces processes that result in development of dermal fibrosis; it also activates or protracts the immune response. The aim of this review is to summarize recent knowledge about the role of periostin in the pathogenesis of dermatoses.


Periostin Hypertrophic scar Keloid Scleroderma Atopic dermatitis Melanoma Mycosis fungoides 


  1. 1.
    Abraham D (2008) Connective tissue growth factor: growth factor, matricellular organizer, fibrotic biomarker or molecular target for anti-fibrotic therapy in SSc? Rheumatology (Oxford) 47(Suppl 5):v8–v9CrossRefGoogle Scholar
  2. 2.
    Agar NS, Wedgeworth E, Crichton S, Mitchell TJ, Cox M, Ferreira S, Robson A, Calonje E, Stefanato CM, Wain EM, Wilkins B, Fields PA, Dean A, Webb K, Scarisbrick J, Morris S, Whittaker SJ (2010) Survival outcomes and prognostic factors in mycosis fungoides/Sezary syndrome: validation of the revised International Society for Cutaneous Lymphomas/European Organisation for Research and Treatment of Cancer staging proposal. J Clin Oncol 28:4730–4739CrossRefGoogle Scholar
  3. 3.
    Ando T, Xiao W, Gao P, Namiranian S, Matsumoto K, Tomimori Y, Hong H, Yamashita H, Kimura M, Kashiwakura J, Hata TR, Izuhara K, Gurish MF, Roers A, Rafaels NM, Barnes KC, Jamora C, Kawakami Y, Kawakami T (2014) Critical role for mast cell Stat5 activity in skin inflammation. Cell Rep 6:366–376CrossRefGoogle Scholar
  4. 4.
    Assoian RK, Fleurdelys BE, Stevenson HC, Miller PJ, Madtes DK, Raines EW, Ross R, Sporn MB (1987) Expression and secretion of type beta transforming growth factor by activated human macrophages. Proc Natl Acad Sci U S A 84:6020–6024CrossRefGoogle Scholar
  5. 5.
    Bae Y, Izuhara K, Ohta S, Ono J, Hong GU, Ro JY, Park GH, Choi JH (2016) Periostin and Interleukin-13 are independently related to chronic spontaneous Urticaria. Allergy Asthma Immunol Res 8:457–460CrossRefGoogle Scholar
  6. 6.
    Conway SJ, Izuhara K, Kudo Y, Litvin J, Markwald R, Ouyang G, Arron JR, Holweg CT, Kudo A (2014) The role of periostin in tissue remodeling across health and disease. Cell Mol Life Sci 71:1279–1288CrossRefGoogle Scholar
  7. 7.
    Egbert M, Ruetze M, Sattler M, Wenck H, Gallinat S, Lucius R, Weise JM (2014) The matricellular protein periostin contributes to proper collagen function and is downregulated during skin aging. J Dermatol Sci 73:40–48CrossRefGoogle Scholar
  8. 8.
    Elliott CG, Forbes TL, Leask A, Hamilton DW (2015) Inflammatory microenvironment and tumor necrosis factor alpha as modulators of periostin and CCN2 expression in human non-healing skin wounds and dermal fibroblasts. Matrix Biol 43:71–84CrossRefGoogle Scholar
  9. 9.
    Falke LL, Gholizadeh S, Goldschmeding R, Kok RJ, Nguyen TQ (2015) Diverse origins of the myofibroblast-implications for kidney fibrosis. Nat Rev Nephrol 11:233–244CrossRefGoogle Scholar
  10. 10.
    Fujimura T, Kakizaki A, Furudate S, Aiba S (2017) A possible interaction between periostin and CD163(+) skin-resident macrophages in pemphigus vulgaris and bullous pemphigoid. Exp Dermatol 26:1193–1198CrossRefGoogle Scholar
  11. 11.
    Fukuda K, Sugihara E, Ohta S, Izuhara K, Funakoshi T, Amagai M, Saya H (2015) Periostin is a key niche component for wound metastasis of melanoma. PLoS One 10:e0129704CrossRefGoogle Scholar
  12. 12.
    Furudate S, Fujimura T, Kakizaki A, Kambayashi Y, Asano M, Watabe A, Aiba S (2016) The possible interaction between periostin expressed by cancer stroma and tumor-associated macrophages in developing mycosis fungoides. Exp Dermatol 25:107–112CrossRefGoogle Scholar
  13. 13.
    Gaggioli C, Sahai E (2007) Melanoma invasion – current knowledge and future directions. Pigment Cell Res 20:161–172CrossRefGoogle Scholar
  14. 14.
    Greiling D, Clark RA (1997) Fibronectin provides a conduit for fibroblast transmigration from collagenous stroma into fibrin clot provisional matrix. J Cell Sci 110(Pt 7):861–870PubMedGoogle Scholar
  15. 15.
    Hinz B, Gabbiani G (2003) Mechanisms of force generation and transmission by myofibroblasts. Curr Opin Biotechnol 14:538–546CrossRefGoogle Scholar
  16. 16.
    Hoffjan S, Epplen JT (2005) The genetics of atopic dermatitis: recent findings and future options. J Mol Med (Berl) 83:682–692CrossRefGoogle Scholar
  17. 17.
    Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H, Toyama Y, Bonewald LF, Kudo A (1999) Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res 14:1239–1249CrossRefGoogle Scholar
  18. 18.
    Hutchenreuther J, Vincent KM, Carter DE, Postovit LM, Leask A (2015) CCN2 expression by tumor Stroma is required for melanoma metastasis. J Invest Dermatol 135:2805–2813CrossRefGoogle Scholar
  19. 19.
    Iwayama T, Olson LE (2013) Involvement of PDGF in fibrosis and scleroderma: recent insights from animal models and potential therapeutic opportunities. Curr Rheumatol Rep 15:304CrossRefGoogle Scholar
  20. 20.
    Kakizaki A, Fujimura T, Furudate S, Kambayashi Y, Aiba S (2015) Immunohistochemical similarities between lichen Sclerosus et Atrophicus and Morphea: a case study. Case Rep Dermatol 7:39–45CrossRefGoogle Scholar
  21. 21.
    Katayama I, Yokozeki H, Nishioka K (1992) Mast-cell-derived mediators induce epidermal cell proliferation: clue for lichenified skin lesion formation in atopic dermatitis. Int Arch Allergy Immunol 98:410–414CrossRefGoogle Scholar
  22. 22.
    Kim MW, Park JT, Kim JH, Koh SJ, Yoon HS, Cho S, Park HS (2017) Periostin in mature stage localized scleroderma. Ann Dermatol 29:268–275CrossRefGoogle Scholar
  23. 23.
    Kotobuki Y, Yang L, Serada S, Tanemura A, Yang F, Nomura S, Kudo A, Izuhara K, Murota H, Fujimoto M, Katayama I, Naka T (2014) Periostin accelerates human malignant melanoma progression by modifying the melanoma microenvironment. Pigment Cell Melanoma Res 27:630–639CrossRefGoogle Scholar
  24. 24.
    Kudo A (2011) Periostin in fibrillogenesis for tissue regeneration: periostin actions inside and outside the cell. Cell Mol Life Sci 68:3201–3207CrossRefGoogle Scholar
  25. 25.
    Lafyatis R (2014) Transforming growth factor beta – at the Centre of systemic sclerosis. Nat Rev Rheumatol 10:706–719CrossRefGoogle Scholar
  26. 26.
    Makino K, Makino T, Stawski L, Mantero JC, Lafyatis R, Simms R, Trojanowska M (2017) Blockade of PDGF receptors by crenolanib has therapeutic effect in patient fibroblasts and in preclinical models of systemic sclerosis. J Invest Dermatol 137:1671–1681CrossRefGoogle Scholar
  27. 27.
    Marangoni RG, Korman BD, Wei J, Wood TA, Graham LV, Whitfield ML, Scherer PE, Tourtellotte WG, Varga J (2015) Myofibroblasts in murine cutaneous fibrosis originate from adiponectin-positive intradermal progenitors. Arthritis Rheumatol 67:1062–1073CrossRefGoogle Scholar
  28. 28.
    Masuoka M, Shiraishi H, Ohta S, Suzuki S, Arima K, Aoki S, Toda S, Inagaki N, Kurihara Y, Hayashida S, Takeuchi S, Koike K, Ono J, Noshiro H, Furue M, Conway SJ, Narisawa Y, Izuhara K (2012) Periostin promotes chronic allergic inflammation in response to Th2 cytokines. J Clin Invest 122:2590–2600CrossRefGoogle Scholar
  29. 29.
    Murota H, Katayama I (2009) Emedastine difumarate: a review of its potential ameliorating effect for tissue remodeling in allergic diseases. Expert Opin Pharmacother 10:1859–1867CrossRefGoogle Scholar
  30. 30.
    Murota H, Katayama I (2011) Assessment of antihistamines in the treatment of skin allergies. Curr Opin Allergy Clin Immunol 11:428–437CrossRefGoogle Scholar
  31. 31.
    Murota H, Katayama I (2017) Exacerbating factors of itch in atopic dermatitis. Allergol Int 66:8–13CrossRefGoogle Scholar
  32. 32.
    Murota H, Bae S, Hamasaki Y, Maruyama R, Katayama I (2008) Emedastine difumarate inhibits histamine-induced collagen synthesis in dermal fibroblasts. J Investig Allergol Clin Immunol 18:245–252PubMedGoogle Scholar
  33. 33.
    Murota H, Lingli Y, Katayama I (2017) Periostin in the pathogenesis of skin diseases. Cell Mol Life Sci 74:4321–4328CrossRefGoogle Scholar
  34. 34.
    Nishioka K, Katayama I, Kondo H, Shinkai H, Ueki H, Tamaki K, Takehara K, Tajima S, Maeda M, Hayashi S, Kodama H, Miyachi Y, Mizutani H, Fujisaku A, Sasaki T, Shimizu M, Kaburagi J (1996) Epidemiological analysis of prognosis of 496 Japanese patients with progressive systemic sclerosis (SSc). Scleroderma Research Committee Japan. J Dermatol 23:677–682CrossRefGoogle Scholar
  35. 35.
    Nishiyama T, Kii I, Kashima TG, Kikuchi Y, Ohazama A, Shimazaki M, Fukayama M, Kudo A (2011) Delayed re-epithelialization in periostin-deficient mice during cutaneous wound healing. PLoS One 6(4):e18410CrossRefGoogle Scholar
  36. 36.
    Ontsuka K, Kotobuki Y, Shiraishi H, Serada S, Ohta S, Tanemura A, Yang L, Fujimoto M, Arima K, Suzuki S, Murota H, Toda S, Kudo A, Conway SJ, Narisawa Y, Katayama I, Izuhara K, Naka T (2012) Periostin, a matricellular protein, accelerates cutaneous wound repair by activating dermal fibroblasts. Exp Dermatol 21:331–336CrossRefGoogle Scholar
  37. 37.
    Palumbo-Zerr K, Zerr P, Distler A, Fliehr J, Mancuso R, Huang J, Mielenz D, Tomcik M, Furnrohr BG, Scholtysek C, Dees C, Beyer C, Kronke G, Metzger D, Distler O, Schett G, Distler JH (2015) Orphan nuclear receptor NR4A1 regulates transforming growth factor-beta signaling and fibrosis. Nat Med 21:150–158CrossRefGoogle Scholar
  38. 38.
    Shiraishi H, Masuoka M, Ohta S, Suzuki S, Arima K, Taniguchi K, Aoki S, Toda S, Yoshimoto T, Inagaki N, Conway SJ, Narisawa Y, Izuhara K (2012) Periostin contributes to the pathogenesis of atopic dermatitis by inducing TSLP production from keratinocytes. Allergol Int 61:563–572CrossRefGoogle Scholar
  39. 39.
    Sidgwick GP, Bayat A (2012) Extracellular matrix molecules implicated in hypertrophic and keloid scarring. J Eur Acad Dermatol Venereol 26:141–152CrossRefGoogle Scholar
  40. 40.
    Spatz A, Batist G, Eggermont AM (2010) The biology behind prognostic factors of cutaneous melanoma. Curr Opin Oncol 22:163–168CrossRefGoogle Scholar
  41. 41.
    Stadler R, Stranzenbach R (2018) Molecular pathogenesis of cutaneous lymphomas. Exp Dermatol 27:1078–1083CrossRefGoogle Scholar
  42. 42.
    Stawski L, Han R, Bujor AM, Trojanowska M (2012) Angiotensin II induces skin fibrosis: a novel mouse model of dermal fibrosis. Arthritis Res Ther 14:R194CrossRefGoogle Scholar
  43. 43.
    Takayama G, Arima K, Kanaji T, Toda S, Tanaka H, Shoji S, Mckenzie AN, Nagai H, Hotokebuchi T, Izuhara K (2006) Periostin: a novel component of subepithelial fibrosis of bronchial asthma downstream of IL-4 and IL-13 signals. J Allergy Clin Immunol 118:98–104CrossRefGoogle Scholar
  44. 44.
    Takeshita S, Kikuno R, Tezuka K, Amann E (1993) Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I. Biochem J 294(Pt 1):271–278CrossRefGoogle Scholar
  45. 45.
    Tilman G, Mattiussi M, Brasseur F, Van Baren N, Decottignies A (2007) Human periostin gene expression in normal tissues, tumors and melanoma: evidences for periostin production by both stromal and melanoma cells. Mol Cancer 6:80CrossRefGoogle Scholar
  46. 46.
    Varga J, Rudnicka L, Uitto J (1994) Connective tissue alterations in systemic sclerosis. Clin Dermatol 12:387–396CrossRefGoogle Scholar
  47. 47.
    Walker JT, Mcleod K, Kim S, Conway SJ, Hamilton DW (2016) Periostin as a multifunctional modulator of the wound healing response. Cell Tissue Res 365:453–465CrossRefGoogle Scholar
  48. 48.
    Weller K, Foitzik K, Paus R, Syska W, Maurer M (2006) Mast cells are required for normal healing of skin wounds in mice. FASEB J 20:2366–2368CrossRefGoogle Scholar
  49. 49.
    Weng CM, Yu CC, Kuo ML, Chen BC, Lin CH (2014) Endothelin-1 induces connective tissue growth factor expression in human lung fibroblasts by ETAR-dependent JNK/AP-1 pathway. Biochem Pharmacol 88:402–411CrossRefGoogle Scholar
  50. 50.
    Wood SH, Ke X, Nuttall T, Mcewan N, Ollier WE, Carter SD (2009) Genome-wide association analysis of canine atopic dermatitis and identification of disease related SNPs. Immunogenetics 61:765–772CrossRefGoogle Scholar
  51. 51.
    Wynn TA (2004) Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol 4:583–594CrossRefGoogle Scholar
  52. 52.
    Yamaguchi Y, Yoshikawa K (2001) Cutaneous wound healing: an update. J Dermatol 28:521–534CrossRefGoogle Scholar
  53. 53.
    Yamaguchi Y, Ono J, Masuoka M, Ohta S, Izuhara K, Ikezawa Z, Aihara M, Takahashi K (2013) Serum periostin levels are correlated with progressive skin sclerosis in patients with systemic sclerosis. Br J Dermatol 168:717–725CrossRefGoogle Scholar
  54. 54.
    Yang L, Serada S, Fujimoto M, Terao M, Kotobuki Y, Kitaba S, Matsui S, Kudo A, Naka T, Murota H, Katayama I (2012) Periostin facilitates skin sclerosis via PI3K/Akt dependent mechanism in a mouse model of scleroderma. PLoS One 7:e41994CrossRefGoogle Scholar
  55. 55.
    Yang L, Murota H, Serada S, Fujimoto M, Kudo A, Naka T, Katayama I (2014) Histamine contributes to tissue remodeling via periostin expression. J Invest Dermatol 134:2105–2113CrossRefGoogle Scholar
  56. 56.
    Zhang Z, Nie F, Kang C, Chen B, Qin Z, Ma J, Ma Y, Zhao X (2014) Increased periostin expression affects the proliferation, collagen synthesis, migration and invasion of keloid fibroblasts under hypoxic conditions. Int J Mol Med 34:253–261CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of DermatologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan

Personalised recommendations