Methods of Structure Determination

  • Natalya Kurochkina


Structure of biological macromolecules and small molecules ligands is very important for our understanding of living organisms and processes. High resolution structures give us atomic positions of molecules and their complexes. Imaging of individual molecules and their dynamic behavior in cellular reactions and pathways is rich source of data that brings new insights about mechanisms of action. Experimental and theoretical models of biological molecules become more and more accurate and contribute to all areas of biomedical research.


Crystallography NMR Electron microscopy Theoretical model Structure 


  1. Alderson TR, Charlier C, Torchia DA, Anfinrud P, Bax A (2017) Monitoring hydrogen exchange during protein folding by fast pressure jump NMR spectroscopy. J Am Chem Soc 139(32):11036–11039. doi: Epub 2017 Aug 7. PubMed PMID: 28766333; PubMed Central PMCID: PMC5586491CrossRefGoogle Scholar
  2. Bernstein FC, Koetzle TF, Williams GJB, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The protein data bank: a computer-based archival file for macromolecular structures. J Mol Biol 112:535CrossRefGoogle Scholar
  3. Charlier C, Alderson TR, Courtney JM, Ying J, Anfinrud P, Bax A (2018) Study of protein folding under native conditions by rapidly switching the hydrostatic pressure inside an NMR sample cell. Proc Natl Acad Sci USA 115(18):E4169–E4178. Epub 2018 Apr 16. PubMed PMID: 29666248; PubMed Central PMCID: PMC5939115CrossRefPubMedGoogle Scholar
  4. Chou KC (2004) Review: Structural bioinformatics and its impact to biomedical science. Curr Med Chem 11:2105–2134CrossRefGoogle Scholar
  5. Collins FS, Gottlieb S (2018) The next phase of human gene-therapy oversight. N Engl J Med doi: 10.1056/NEJMp1810628. [Epub ahead of print] PubMed PMID: 30110242CrossRefGoogle Scholar
  6. Crick F (1953) Acta Crystallogr 6:689CrossRefGoogle Scholar
  7. Dao EH, Poitevin F, Sierra RG, Gati C, Rao Y, Ciftci HI, Aksit F, McGurk A, Obrinski T, Mgbam P, Hayes B, DE Lichtenberg C, Pardo-Avila F, Corsepius N, Zhang L, Seaberg MH, Hunter MS, Liang M, Koglin JE, Wakatsuki S, Demirci H (2018) Structure of the 30S ribosomal decoding complex at ambient temperature. RNA. pii: rna.067660.118. doi: 10.1261/rna.067660.118. [Epub ahead of print] PubMed PMID: 30139800CrossRefGoogle Scholar
  8. Efimov AV (1979) Packing of alpha-helices in globular proteins. Layer-structure of globin hydrophobic cores. J Mol Biol 134(1):23–40CrossRefGoogle Scholar
  9. Gaudet R (2008) A primer on ankyrin repeat function in TRP channels and beyond. Mol Biosyst 4:372–379CrossRefGoogle Scholar
  10. Gernert KM, Surles MC, Labean TH, Richardson JS, Richardson DC (1995) Alacoil: a very tight, antiparallel coiled-coil of helices. Protein Science 4:2252–2260CrossRefGoogle Scholar
  11. Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319:1352–1355CrossRefGoogle Scholar
  12. Hall BE, Prochazkova M, Sapio MR, Minetos P, Kurochkina N, Binukumar BK, Amin ND, Terse A, Joseph J, Raithel SJ, Mannes AJ, Pant HC, Chung MK, Iadarola MJ, Kulkarni AB (2018) Phosphorylation of the Transient Receptor Potential Ankyrin 1 by Cyclin-dependent Kinase 5 affects Chemo-nociception. Sci Rep 8(1):1177. PubMed PMID: 29352128; PubMed Central PMCID: PMC5775258CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hodges RS, Sodek J, Smillie LB et al (1972) Amino-acid sequence of rabbit skeletal tropomyosin and its coiled-coil structure. Proc Natl Acad Sci 69:3800–3804CrossRefGoogle Scholar
  14. Igarashi M, Nozumi M, Wu LG, Cella Zanacchi F, Katona I, Barna L, Xu P, Zhang M, Xue F, Boyden E (2018) New observations in neuroscience using superresolution microscopy. J Neurosci 38(44):9459–9467. PubMed PMID: 30381437CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kedei N, Szabo T, Lile JD, Treanor JJ, Olah Z, Iadarola MJ, Blumberg PM (2001) Analysis of the native quaternary structure of vanilloid receptor 1. J Biol Chem 276:28613–28619CrossRefGoogle Scholar
  16. Khoshouei M, Radjainia M, Baumeister W, Danev R (2017) Cryo-EM structure of haemoglobin at 3.2 Å determined with the volta phase plate. Nat Commun 8:16099. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kurochkina N (2007) J Theor Biol 247:110–121CrossRefGoogle Scholar
  18. Kurochkina N (2008) J Theor Biol 255:188–198CrossRefGoogle Scholar
  19. Kurochkina N, Choekyi T (2011) Helix-helix interfaces and ligand binding. J Theor Biol 283:92–102CrossRefGoogle Scholar
  20. Lee G, Abdi K, Jiang Y, Michaely P, Bennett V, Marszalek PE (2006) Nanospring behaviour of ankyrin repeats. Nature 440:246–249CrossRefGoogle Scholar
  21. Lishko PV, Procko E, Jin X, Phelps CB, Gaudet R (2007) The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron 54:905–918CrossRefGoogle Scholar
  22. Lomelino CL, Andring JT, McKenna R (2018) Crystallography and Its Impact on Carbonic Anhydrase Research. Int J Med Chem 2018:9419521. eCollection 2018. Review. PubMed PMID: 30302289; PubMed Central PMCID: PMC6158936CrossRefPubMedPubMedCentralGoogle Scholar
  23. Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450:376–382CrossRefGoogle Scholar
  24. Martin RW, Kelly JE, Kelz JI. Advances in instrumentation and methodology for solid-state NMR of biological assemblies. J Struct Biol. 2018. pii: S1047-8477(18)30253–30253. [Epub ahead of print] PubMed PMID: 30205196CrossRefGoogle Scholar
  25. Michaely P, Tomchick DR, Machius M, Anderson RGW (2002) Crystal structure of a 12 ANK repeat stack from human ankyrinR. EMBO J 21:6387–6396CrossRefGoogle Scholar
  26. Mosavi LK, Minor DL, Peng Z (2002) Consensus-derived structural determinants of the ankyrin repeat motif. Proc Natl Acad Sci 99:16031–16034CrossRefGoogle Scholar
  27. Phelps CB, Huang RJ, Lishko PV, Wang RR, Gaudet R (2008) Structural analyses of the Ankyrin Repeat Domain of TRPV6 and related TRPV ion channels. Biochemistry 47:2476–2484CrossRefGoogle Scholar
  28. Sanders SS, Mui KKN, Sutton LM, Hayden MR (2014) Identification of binding sites in Huntingtin for the Huntingtin Interacting Proteins HIP14 and HIP14L. PlosOne 28:e90669CrossRefGoogle Scholar
  29. Sawyer N, Chen J, Regan L (2013) All repeats are not equal: a module-based approach to guide repeat protein design. J Mol Biol 425:1826–1838CrossRefGoogle Scholar
  30. Schnell JR, Chou JJ (2008) Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451:591–595CrossRefGoogle Scholar
  31. Schulz GE, Schirmer RH (1982) Principles of protein structure. Ed: Cantor, C. R.,Google Scholar
  32. Streckfus CF, Arreola D, Edwards C, Bigler L (2012) Salivary protein profiles among HER2/neu-receptor-positive and -negative breast cancer patients: support for using salivary protein profiles for modeling breast cancer progression. J Oncol 2012:413256. Epub 2012 Apr 10. PubMed PMID: 22570650; PubMed Central PMCID: PMC3335259CrossRefGoogle Scholar
  33. Stumpp MT, Binz HK, Amstutz P (2008) DARPins: a new generation of protein therapeutics. Drug Discov Today 13:695–701CrossRefGoogle Scholar
  34. Teweri R, E Bailes, KA Bunting, JC Coates (2010) Trends Cell. Biol 20:470Google Scholar
  35. Thomas SE, Mendes V, Kim SY, Malhotra S, Ochoa-Montaño B, Blaszczyk M, Blundell TL (2017) Structural biology and the design of new therapeutics: from HIV and cancer to mycobacterial infections: a paper dedicated to John Kendrew. J Mol Biol 2017 Jun 23. pii: S0022-2836(17)30315–7. [Epub ahead of print]CrossRefGoogle Scholar
  36. Utreras E, Prochaskova M, Terse A, Gross J, Keller J, Iadarola MJ, Kulkarni AB (2013) TGF-β1 sensitizes TRPV1 through Cdk5 signaling in odontoblast-like cells. Mol Pain 9:24–38CrossRefGoogle Scholar
  37. Valm AM, Cohen S, Legant WR, Melunis J, Hershberg U, Wait E, Cohen AR, Davidson MW, Betzig E, Lippincott-Schwartz J (2017) Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546(7656):162–167. Epub 2017 May 24. PubMed PMID: 28538724; PubMed Central PMCID: PMC5536967CrossRefGoogle Scholar
  38. Venkataramani RN, MacLachlan TK, Chai X, El-Deiry WS, Marmorstein R (2002) Structure-based Design of p18INK4cProteins with Increased Thermodynamic Stability and Cell Cycle Inhibitory Activity. J Biol Chem 277:48827–48833CrossRefGoogle Scholar
  39. Wierenga RK, Noble MEM, Vriend G, Naughe S, Hol WGJ (1991) Refined 1.83 Angstrom structure of trypanosomal triosephospate isomerase, crystallized in presence of 2.4M- Ammonium sulphate. A comparison with the structure of the trypanosomal triosephosphate isomerase-glycerol-3-phosphate complex. J Mol Biol 220:995–1015CrossRefGoogle Scholar
  40. Zhang C, Caj J, Zhang J, Li Z, Guo Z, Zhang X, Lu W, Zhang Y, Yuan A, Yu S, Fang Y (2014) Pharacogenetic effects of dopamine transporter gene polymorphisms on response to chlorpromazine and clozapine and on extrapyramidal syndrome in schizophrenia. Prog Neuropsychopharmacol Biol Physciatry 50:110CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Natalya Kurochkina
    • 1
  1. 1.Department of BiophysicsSchool of Theoretical ModelingWashington, DCUSA

Personalised recommendations