Advertisement

Multiprotein Complexes

  • Natalya Kurochkina
Chapter

Abstract

Cell processes involve assembly of many components and coordination of their function. Protein complexes assemble and disassemble in response to various signals. Complexes are necessary to sort and target cargoes to cellular organelles, move molecules along filaments, exchange and recycle materials between cellular compartments, handle degradation of toxic molecules, provide signaling and communication inside the cell and between cells. They consist of tens or even hundreds of proteins and their ligands which work in accord to support life functions. Formation of multiprotein complexes is regulated by posttranslational modifications and depends on protein interactions. This chapter describes molecular assemblies involved in vital cellular processes.

Keywords

Complex Assembly Cellular organelle Filament Protein interactions 

References

  1. Abaan OD, Toretsky JA (2008) PTPL1: a large phosphatase with a split personality. Cancer Metastasis Rev 27:205–214PubMedPubMedCentralCrossRefGoogle Scholar
  2. Arévalo JC, Pereira DB, Yano H, Teng KK, Chao MV (2006) Identification of a switch in neurotrophin signaling by selective tyrosine phosphorylation. J Biol Chem 281:1001–1007PubMedCrossRefGoogle Scholar
  3. Arévalo JC, Wu SH, Takahashi TZH, Yu T, Yano H et al (2010) The ARMS/Kidins220 scaffold protein modulates synaptic transmission. Mol Cell Neurosci 45:92–100PubMedPubMedCentralCrossRefGoogle Scholar
  4. Avirneni-Vadlamudi U, Galindo KA, Endicott TR, Paulson V, Cameron S, Galindo RL (2012) Drosophila and mammalian models uncover a role for the myoblast fusion gene TANC1 in rhabdomyosarcoma. J Clin Invest 122:403–407PubMedCrossRefGoogle Scholar
  5. Bankston JR, Camp SS, DiMaio F, Lewis AS, Chetkovich DM, Zagotta WN (2012) Structure and stoichiometry of an accessory subunit TRIP8b interaction with hyperpolarization-activated cyclic nucleotide-gated channels. Proc Natl Acad Sci USA 109(20):7899–7904.  https://doi.org/10.1073/pnas.1201997109. Epub 2012 May 1. PubMed PMID: 22550182; PubMed Central PMCID: PMC3356637CrossRefPubMedGoogle Scholar
  6. Bariselli S, Bellone C (2016) VTA DA neuron excitatory synapses in Shank3 ?ex4-9 mouse line. Synapse.  https://doi.org/10.1002/syn.21955 CrossRefGoogle Scholar
  7. Baron MK, Boeckers TM, Vaida B, Faham S, Gingery M, Sawaya MR, Salyer D, Gundelfinger ED, Bowie JU (2006) An architectural framework that may lie at the core of the postsynaptic density. Science 311:531–535PubMedCrossRefGoogle Scholar
  8. Basu A, Chakrabarti A (2015) Hemoglobin interacting proteins and implications of spectrin hemoglobin interaction. J Proteomics 128:469–475.  https://doi.org/10.1016/j.jprot.2015.06.014. Epub 2015 Jun 30. PubMed PMID: 26141508CrossRefPubMedGoogle Scholar
  9. Biederer T, Südhof TC (2000) Mints as adaptors. Direct binding to neurexins and recruitment of munc18. J Biol Chem 275(51):39803–39806PubMedCrossRefGoogle Scholar
  10. Borgdorff AJ, Choquet D (2002) Regulation of AMPA receptor lateral movements. Nature 417:649–653PubMedCrossRefGoogle Scholar
  11. Boucher LE, Bosch J (2015) The apicomplexan glideosome and adhesins -- structures and function. J Struct Biol 190(2):93–114.  https://doi.org/10.1016/j.jsb.2015.02.008 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bouzidi M, Tricaud N, Giraud P, Kordeli E, Caillol G, Deleuze C, Couraud F, Alcaraz G (2002) Interaction of the Nav1.2a subunit of the voltage-dependent sodium channel with nodal ankyrinG. In vitro mapping of the interacting domains and association in synaptosomes. J Biol Chem 277:28996–28900PubMedCrossRefGoogle Scholar
  13. Buxbaum JD, Daly MJ, Devlin B, Lehner T, Roeder K, State MW, The Autism Sequencing Consortium (2012) The autism sequencing consortium: large scale, high throughput sequencing in autism spectrum disorders. Neuron 76:1052–1056PubMedCrossRefGoogle Scholar
  14. Caldieri G, Malabarba MG, Di Fiore PP, Sigismund S (2018) EGFR trafficking in physiology and cancer. Prog Mol Subcell Biol 57:235–272.  https://doi.org/10.1007/978-3-319-96704-2_9. PubMed PMID: 30097778CrossRefPubMedGoogle Scholar
  15. Cheng TC, Akey IV, Yuan S, Yu Z, Ludtke SJ, Akey CW (2017) A near-atomic structure of the dark apoptosome provides insight into assembly and activation. Structure 25(1):40–52.  https://doi.org/10.1016/j.str.2016.11.002. Epub 2016 Dec 1. PubMed PMID: 27916517; PubMed Central PMCID: PMC5214966CrossRefPubMedGoogle Scholar
  16. Cho HY, Maeng SJ, Cho HJ, Choi YS, Chung JM, Lee S, Kim HK, Kim JH, Eom CY, Kim YG, Guo M, Jung HS, Kang BS, Kim S (2015) Assembly of multi-tRNA Synthetase complex via heterotetrameric glutathione transferase-homology domains. J Biol Chem 290(49):29313–29328.  https://doi.org/10.1074/jbc.M115.690867. Epub 2015 Oct 15. PubMed PMID: 26472928; PubMed Central PMCID: PMC4705937CrossRefPubMedPubMedCentralGoogle Scholar
  17. Choquet D, Triller A (2003) The role of receptor diffusion in the organization of the postsynaptic membrane. Nat Rev Neurosci 4:251–265PubMedCrossRefGoogle Scholar
  18. Constals A, Penn AC, Compans B, Toulmé E, Phillipat A, Marais S, Retailleau N, Hafner AS, Coussen F, Hosy E, Choquet D (2015) Glutamate-induced AMPA receptor desensitization increases their mobility and modulates short-term plasticity through unbinding from Stargazin. Neuron 85:787–803PubMedCrossRefGoogle Scholar
  19. Cortés RY, Arévalo JC, Magby JP, Chao MV, Plummer MR (2007) Developmental and activity-dependent regulation of ARMS/Kidins220 in cultured rat hippocampal neurons. Dev Neurobiol 67:1687–1698PubMedCrossRefGoogle Scholar
  20. Costales JL, Kolevzon A (2015) Phelan–McDermid Syndrome and SHANK3: Implications for Treatment. Neurotherapeutics 12:620–630PubMedPubMedCentralCrossRefGoogle Scholar
  21. Dayam RM, Saric A, Shilliday RE, Botelho RJ (2015) The Phosphoinositide-Gated Lysosomal Ca(2+) channel, TRPML1, Is required for Phagosome maturation. Traffic 16(9):1010–1026.  https://doi.org/10.1111/tra.12303. Epub 2015 Jun 18. PubMed PMID: 26010303CrossRefPubMedPubMedCentralGoogle Scholar
  22. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE et al (2014) Synaptic, transcriptional, and chromatin genes disrupted in autism. Nature 515:209–215PubMedPubMedCentralCrossRefGoogle Scholar
  23. Dorstyn L, Akey CW, Kumar S (2018) New insights into apoptosome structure and function. Cell Death Differ 25(7):1194–1208.  https://doi.org/10.1038/s41418-017-0025-z. Epub 2018 May 15. Review. PubMed PMID: 29765111; PubMed Central PMCID: PMC6030056CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dosemeci A, Toy D, Reese TS, Tao-Cheng J-H (2015) AIDA-1 moves out of the postsynaptic density core under excitatory conditions. PLoS ONE 10:e0137216PubMedPubMedCentralCrossRefGoogle Scholar
  25. Dosemeci A, Weinberg RJ, Reese TS, Tao-Cheng J-H (2016) The Postsynaptic Density: there is more than meets the eye. Front Synaptic Neurosci 8:23PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dufour A, Bellac CL, Eckhard U, Solis N, Klein T, Kappelhoff R, Fortelny N, Jobin P, Rozmus J, Mark J, Pavlidis P, Dive V, Barbour SJ, Overall CM (2018) C-terminal truncation of IFN-? inhibits proinflammatory macrophage responses and is deficient in autoimmune disease. Nat Commun 9(1):2416.  https://doi.org/10.1038/s41467-018-04717-4. PubMed PMID: 29925830; PubMed Central PMCID: PMC6010466CrossRefPubMedPubMedCentralGoogle Scholar
  27. Durak O, de Anda FC, Singh KK, Leussis MP, Petryshen TL, Sklar P, Tsai L-H (2015) Ankyrin-G regulates neurogenesis and Wnt signaling by altering the subcellular localization of β-catenin. Mol Psychiatry 20:388–397PubMedCrossRefPubMedCentralGoogle Scholar
  28. Durand CM, Perroy J, Loll F, Perrais D, Fagni L, Bourgeron T et al (2012) SHANK3 mutations identified in autism lead to modification of dendritic spine morphology via an actin-dependent mechanism. Mol Psychiatry 17:71–84PubMedCrossRefPubMedCentralGoogle Scholar
  29. Eydt K, Davies KM, Behrendt C, Wittig I, Reichert AS (2017) Cristae architecture is determined by an interplay of the MICOS complex and the F(1)F(O) ATP synthase via Mic27 and Mic10. Microb Cell 4(8):259–272.  https://doi.org/10.15698/mic2017.08.585. PubMed PMID: 28845423; PubMed Central PMCID: PMC5568431CrossRefPubMedPubMedCentralGoogle Scholar
  30. Faurobert E, Albiges-Rizo C (2010) Recent insights into cerebral cavernous malformations: a complex jigsaw puzzle under construction. The Febs Journal 277:1084–1096PubMedPubMedCentralCrossRefGoogle Scholar
  31. Fujita-Jimbo E, Tanabe Y, Yu Z, Kojima K, Mori M, Li H et al (2015) The association of GPR85 with PSD-95-neuroligin complex and autism spectrum disorder: a molecular analysis. Molecular Autism 6: 17 Proc. Natl Acad Sci 100:13821–13826Google Scholar
  32. Gamir-Morralla A, López-Menéndez C, Ayuso-Dolado S, Tejeda GS, Montaner J, Rosell A et al (2015) Development of a neuroprotective peptide that preserves survival pathways by preventing Kidins220/ARMS calpain processing induced by excitotoxicity. Cell Death & Disease 6:e1939.  https://doi.org/10.1038/cddis.2015.307 CrossRefGoogle Scholar
  33. Gaubitz C, Prouteau M, Kusmider B, Loewith R (2016) TORC2 structure and function. Trends Biochem Sci 41(6):532–545:  https://doi.org/10.1016/j.tibs.2016.04.001. Epub 2016 May 5. Review. PubMed PMID: 27161823PubMedCrossRefGoogle Scholar
  34. Ghazawi FM, Faller EM, Parmar P, El-Salfiti A, MacPherson PA (2016) Suppressor of cytokine signaling (SOCS) proteins are induced by IL7 and target surface CD127 protein for degradation in human CD8 T cells. Cell Immunol 306-307:41–52.  https://doi.org/10.1016/j.cellimm.2016.07.002 CrossRefPubMedGoogle Scholar
  35. Ghersi E, Noviello C, D'Adamio L (2004) Amyloid-beta protein precursor (AbetaPP) intracellular domain-associated protein-1 proteins bind to AbetaPP and modulate its processing in an isoform-specific manner. J Biol Chem 279:49105–49112PubMedCrossRefGoogle Scholar
  36. Glondu-Lassis M, Dromard M, Chavey C, Puech C, Fajas L, Hendriks W, Freiss G (2009) Downregulation of protein tyrosine phosphatase PTP-BL represses adipogenesis. Int J Biochem Cell Biol 41:2173–2180PubMedCrossRefPubMedCentralGoogle Scholar
  37. Kapitein LC, Hoogenraad CC (2011) Which way to go? Cytoskeletal organization and polarized transport in neurons. Mol Cell Neurosci 46(1):9–20.  https://doi.org/10.1016/j.mcn.2010.08.015. Epub 2010 Sep 9CrossRefPubMedGoogle Scholar
  38. Granot-Hershkovitz E, Raas-Rothschild A, Frumkin A, Granot D, Silverstein S, Abeliovich D (2011) Complex chromosomal rearrangement in a girl with psychomotor-retardation and a de novo inversion: inv(2)(p15;q24.2). Am J Med Genet A 155A:1825–1832PubMedCrossRefGoogle Scholar
  39. Greber BJ, Bieri P, Leibundgut M, Leitner A, Aebersold R, Boehringer D, Ban N (2015) Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome. Science 348(6232):303–308. doi:  https://doi.org/10.1126/science.aaa3872. Epub 2015 Apr 2. PubMed PMID: 25837512PubMedCrossRefPubMedCentralGoogle Scholar
  40. Greenberg KP, Pham A, Werblin FS (2011) Differential targeting of optical neuromodulators to ganglion cell soma and dendrites allows dynamic control of center-surround antagonism. Neuron 69:713–720PubMedCrossRefGoogle Scholar
  41. Hafner AS, Penn AC, Grillo-Bosch D, Retailleau N, Poujol C, Philippat A, Coussen F, Sainlos M, Opazo P, Choquet D (2015) Lengthening of the Stargazin Cytoplasmic Tail Increases Synaptic Transmission by Promoting Interaction to Deeper Domains of PSD-95. Neuron 86:475–489PubMedCrossRefGoogle Scholar
  42. Han S, Nam J, Li Y, Kim S, Cho SH, Cho YS, Choi SY, Choi J, Han K, Kim Y, Na M, Kim H, Bae YC, Choi SY, Kim E (2010) Regulation of dendritic spines, spatial memory, and embryonic development by the TANC family of PSD-95-interacting proteins. J Neurosci 30:15102–15112PubMedCrossRefGoogle Scholar
  43. Hayashi MK, Tang C, Verpelli C, Narayanan R, Stearns MH, Xu R-M et al (2009) The postsynaptic density proteins Homer and Shank form a polymeric network structure. Cell 137:159–171PubMedPubMedCentralCrossRefGoogle Scholar
  44. Heine M, Groc L, Frischknecht R, Béïque J-C, Lounis B, Rumbaugh G et al (2008) Surface Mobility of Postsynaptic AMPARs Tunes Synaptic Transmission. Science 320:201–205PubMedPubMedCentralCrossRefGoogle Scholar
  45. Herberich SE, Klose R, Moll I, Yang W-J, Wüstehube-Lausch J, Fischer A (2015) ANKS1B interacts with the cerebral cavernous malformation Protein-1 and controls endothelial permeability but Not sprouting angiogenesis. PLoS ONE 10:e0145304PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hodkinson PS, Elliott PA, Lad Y, McHugh BJ, MacKinnon AC, Haslett C, Sethi T (2007) Mammalian NOTCH-1 activates beta1 integrins via the small GTPase R-Ras. J Biol Chem 282:28991–29001PubMedCrossRefGoogle Scholar
  47. Hoffmann E, Machelart A, Song OR, Brodin P (2018) Proteomics of mycobacterium infection: moving towards a better understanding of pathogen-driven immunomodulation. Front Immunol 9:86.  https://doi.org/10.3389/fimmu.2018.00086. eCollection 2018. Review. PubMed PMID: 29441067; PubMed Central PMCID: PMC5797607CrossRefPubMedPubMedCentralGoogle Scholar
  48. Huizing M, Helip-Wooley A, Westbroek W, Gunay-Aygun M, Gahl WA (2008) Disorders of lysosome-related organelle biogenesis: clinical and molecular genetics. Annu Rev Genomics Hum Genet. 9:359–386.  https://doi.org/10.1146/annurev.genom.9.081307.164303. Review. PubMed PMID: 18544035; PubMed Central PMCID: PMC2755194CrossRefPubMedPubMedCentralGoogle Scholar
  49. Isaka Y, Takabatake Y, Takahashi A, Saitoh T, Yoshimori T (2016) Hyperuricemia-induced inflammasome and kidney diseases. Nephrol Dial Transplant 31(6):890–896.  https://doi.org/10.1093/ndt/gfv024. Epub 2015 Mar 31. Review. PubMed PMID: 25829326CrossRefPubMedGoogle Scholar
  50. Jacob AL, Jordan BA, Weinberg R (2010) The organization of amyloid-β protein precursor intracellular domain-associated protein-1 in the rat forebrain. J Comp Neurol 518:3221–3236PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jacobs MD, Harrison SC (1998) Structure of an IkappaBalpha/NF-kappaB complex. Cell 95(6):749–758. PubMed PMID: 9865693PubMedCrossRefGoogle Scholar
  52. Jenkins PM, Kim N, Jones SL, Tseng WC, Svitkina TM, Yin HH, Bennett (2015) Giant ankyrin-G: A critical innovation in vertebrate evolution of fast and integrated neuronal signaling. Proc Natl Acad Sci USA 112:957–964PubMedCrossRefGoogle Scholar
  53. Jia Y, Yun CH, Park E, Ercan D, Manuia M, Juarez J, Xu C, Rhee K, Chen T, Zhang H, Palakurthi S, Jang J, Lelais G, DiDonato M, Bursulaya B, Michellys PY, Epple R, Marsilje TH, McNeill M, Lu W, Harris J, Bender S, Wong KK, Jänne PA, Eck MJ (2016) Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature 534(7605):129–132. doi:  https://doi.org/10.1038/nature17960. Epub 2016 May 25. PubMed PMID: 27251290; PubMed Central PMCID: PMC4929832PubMedPubMedCentralCrossRefGoogle Scholar
  54. John Peter AT, Lachmann J, Rana M, Bunge M, Cabrera M, Ungermann C (2013) The BLOC-1 complex promotes endosomal maturation by recruiting the Rab5 GTPase-activating protein Msb3. J Cell Biol 201(1):97-111. doi:  https://doi.org/10.1083/jcb.201210038. PubMed PMID: 23547030; PubMed Central PMCID: PMC3613695PubMedPubMedCentralCrossRefGoogle Scholar
  55. Johansson P, Wiltschi B, Kumari P, Kessler B, Vonrhein C, Vonck J, Oesterhelt D, Grininger M (2008) Inhibition of the fungal fatty acid synthase type I multienzyme complex. Proc Natl Acad Sci U S A. 105(35):12803–12808.  https://doi.org/10.1073/pnas.0805827105. Epub 2008 Aug 25. PubMed PMID: 18725634; PubMed Central PMCID: PMC2529065CrossRefPubMedPubMedCentralGoogle Scholar
  56. Jung H, Shin J-H, Park Y-S, Chang M-S (2014) Ankyrin repeat-rich membrane spanning (ARMS)/Kidins220 scaffold protein regulates neuroblastoma cell proliferation through p21. Mol Cells 37:881–887PubMedPubMedCentralCrossRefGoogle Scholar
  57. Karasik A, Shanmuganathan A, Howard MJ, Fierke CA, Koutmos M (2016) Nuclear protein-only ribonuclease P2 structure and biochemical characterization provide insight into the conserved properties of tRNA 5′ end processing enzymes. J Mol Biol 428(1):26–40.  https://doi.org/10.1016/j.jmb.2015.11.025. Epub 2015 Dec 3. PubMed PMID: 26655022; PubMed Central PMCID: PMC4738078CrossRefPubMedGoogle Scholar
  58. Kebache S, Ash J, Annis MG, Hagan J, Huber M, Hassard J, Stewart CL, Whiteway M, Nantel A (2007) Grb10 and active Raf-1 kinase promote Bad-dependent cell survival. J Biol Chem 282(30):21873–21883. Epub 2007 May 29. PubMed PMID: 17535812PubMedCrossRefGoogle Scholar
  59. Keleman K, Dickson BJ (2001) Short- and long-range repulsion by the Drosophila Unc5 netrin receptor. Neuron. 32(4):605–617. PubMed PMID: 11719202PubMedCrossRefGoogle Scholar
  60. Kim KJ, Park MC, Choi SJ, Oh YS, Choi EC, Cho HJ, Kim MH, Kim SH, Kim DW, Kim S, Kang BS (2008) Determination of three-dimensional structure and residues of the novel tumor suppressor AIMP3/p18 required for the interaction with ATM. J Biol Chem 283(20):14032–14040.  https://doi.org/10.1074/jbc.M800859200. Epub 2008 Mar 14. PubMed PMID: 18343821CrossRefGoogle Scholar
  61. Kranz TM, Berns A, Shields J, Rothman K, Walsh-Messinger J, Goetz RR et al (2016) Phenotypically distinct subtypes of psychosis accompany novel or rare variants in four different signaling genes. EBioMedicine 6:206–214PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kuan SL, Fischer S, Hafner S, Wang T, Syrovets T, Liu W, Tokura Y, Ng DYW, Riegger A, Förtsch C, Jäger D, Barth TFE, Simmet T, Barth H, Weil T (2018) Boosting antitumor drug efficacy with chemically engineered multidomain proteins. Adv Sci (Weinh). 5(8):1701036. doi: 10.1002/advs.201701036. eCollection 2018 Aug. PubMed PMID: 30128225; PubMed Central PMCID: PMC6097141PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kuijpers M, van de Willige D, Freal A, Chazeau A, Franker MA, Hofenk J, Rodrigues RJ, Kapitein LC, Akhmanova A, Jaarsma D, Hoogenraad CC (2016) Dynein regulator NDEL1 controls polarized cargo transport at the axon initial segment. Neuron 89(3):461–471.  https://doi.org/10.1016/j.neuron.2016.01.022 CrossRefPubMedGoogle Scholar
  64. Kurochkina N (2008) J Theor Biol 255:188–198PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kurochkina N, Choekyi T (2011) Helix-helix interfaces and ligand binding. J Theor Biol 283:92–102PubMedPubMedCentralCrossRefGoogle Scholar
  66. Lasker MV, Gajjar MM, Nair SK (2005) Molecular Structure of the IL-1R-Associated Kinase-4 Death Domain and Its Implications for TLR signaling. J Immun 175:4175–4179PubMedCrossRefGoogle Scholar
  67. Lee SO, Lee MK, Ku B, Bae KH, Lee SC, Lim HM, Kim SJ, Chi SW (2016a) High-resolution crystal structure of the PDZ1 domain of human protein tyrosine phosphatase PTP-Bas. Biochem Biophys Res Commun 478:1205–1210PubMedCrossRefGoogle Scholar
  68. Lee H, Noh H, Mun J, Gu C, Sever S, Park S (2016b) Anks1a regulates COPII-mediated anterograde transport of receptor tyrosine kinases critical for tumorigenesis. Nat Commun 7:12799PubMedPubMedCentralCrossRefGoogle Scholar
  69. Levine ZG, Fan C, Melicher MS, Orman M, Benjamin T, Walker S (2018) O-GlcNAc transferase recognizes protein substrates using an asparagine ladder in the tetratricopeptide repeat (TPR) Superhelix. J Am Chem Soc 140(10):3510–3513.  https://doi.org/10.1021/jacs.7b13546. Epub 2018 Mar 5. PubMed PMID: 29485866; PubMed Central PMCID: PMC5937710PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lewis TL, Mao T, Svoboda K, Arnold DB (2009) Myosin-dependent targeting of transmembrane proteins to neuronal dendrites. Nat Neurosci 12(5):568–576.  https://doi.org/10.1038/nn.2318 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Li B-S, Sun M-K, Zhang L, Takahashi S, Ma W, Vinade L et al (2001) Regulation of NMDA receptors by cyclin-dependent kinase-5. Proc Natl Acad Sci USA 98:12742–12747.  https://doi.org/10.1073/pnas.211428098 CrossRefPubMedGoogle Scholar
  72. Li Y, Zhou M, Hu Q, Bai XC, Huang W, Scheres SH, Shi Y (2017) Mechanistic insights into caspase-9 activation by the structure of the apoptosome holoenzyme. Proc Natl Acad Sci U S A 114(7):1542–1547.  https://doi.org/10.1073/pnas.1620626114. Epub 2017 Jan 31. PubMed PMID: 28143931; PubMed Central PMCID: PMC5320974CrossRefPubMedPubMedCentralGoogle Scholar
  73. Lilja J, Zacharchenko T, Georgiadou M, Jacquemet G, Franceschi N, Peuhu E, Hamidi H, Pouwels J, Martens V, Nia FH, Beifuss M, Boeckers T, Kreienkamp HJ, Barsukov IL, Ivaska J (2017) SHANK proteins limit integrin activation by directly interacting with Rap1 and R-Ras. Nat Cell Biol 19:292–305PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lin S-C, Lo Y-C, Wu H (2010) Helical assembly in the MyD88–IRAK4–IRAK2 complex in TLR/IL-1R signaling. Nature 465:885–890PubMedPubMedCentralCrossRefGoogle Scholar
  75. Liu C, Peng X, Hu C, Li C, Li Q, Xu X (2016) Developmental profiling of ASD-related shank3 transcripts and their differential regulation by valproic acid in zebrafish. Dev Genes Evol 226:389–400.  https://doi.org/10.1007/s00427-016-0561-4 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Liu JJ, Lu L, Hu FQ, Yuan H, Xu Q, Qin YF, Gong JH (2018) Methylene blue attenuates renal ischemia-reperfusion injury by negative regulation of NLRP3 signaling pathway. Eur Rev Med Pharmacol Sci 22(9):2847–2853.  https://doi.org/10.26355/eurrev_201805_14986. PubMed PMID: 29771438CrossRefPubMedGoogle Scholar
  77. López-Benito S, Lillo C, Hernández-Hernández A, Chao MV, Arévalo JC (2016) ARMS/Kidins220 and synembryn-B levels regulate NGF-mediated secretion. J Cell Sci 129:1866–1877PubMedCrossRefGoogle Scholar
  78. Lotan A, Fenckova M, Bralten J, Alttoa A, Dixson L, Williams RW, van der Voet M (2014) Neuroinformatic analyses of common and distinct genetic components associated with major neuropsychiatric disorders. Front Neurosci 8:331PubMedPubMedCentralCrossRefGoogle Scholar
  79. MacGillavry HD, Kerr JM, Kassner J, Frost NA, Blanpied TA (2016) Shank–cortactin interactions control actin dynamics to maintain flexibility of neuronal spines and synapses. Eur J Neurosci 43:179–193PubMedCrossRefGoogle Scholar
  80. Maekawa K, Imagawa N, Naito A, Harada S, Yoshie O, Takagi S (1999) Association of protein-tyrosine phosphatase PTP-BAS with the transcription-factor-inhibitory protein IkappaBalpha through interaction between the PDZ1 domain and ankyrin repeats. Biochem J 337(Pt 2):179–184PubMedPubMedCentralCrossRefGoogle Scholar
  81. Maity TK, Venugopalan A, Linnoila I, Cultraro CM, Giannakou A, Nemati R, Zhang X, Webster JD, Ritt D, Ghosal S, Hoschuetzky H, Simpson RM, Biswas R, Politi K, Morrison DK, Varmus HE, Guha U (2015) Loss of MIG6 accelerates initiation and progression of mutant epidermal growth factor receptor-driven lung adenocarcinoma. Cancer Discov 5(5):534–549.  https://doi.org/10.1158/2159-8290.CD-14-0750. Epub 2015 Mar 3. PubMed PMID: 25735773; PubMed Central PMCID: PMC4560174CrossRefPubMedPubMedCentralGoogle Scholar
  82. Malaspina D, Kranz TM, Heguy A, Harroch S, Mazgaj R, Rothman K et al (2016) Prefrontal neuronal integrity predicts symptoms and cognition in schizophrenia and is sensitive to genetic heterogeneity. Schizophr Res 172:94–100PubMedPubMedCentralCrossRefGoogle Scholar
  83. Mameza MG, Dvoretskova E, Bamann M, Hönck H-H, Güler T, Boeckers TM et al (2013) SHANK3 gene mutations associated with autism facilitate ligand binding to the Shank3 ankyrin repeat region. J Biol Chem 288:26697–26708PubMedPubMedCentralCrossRefGoogle Scholar
  84. Maxson ME, Grinstein S (2014) The vacuolar-type H?-ATPase at a glance - more than a proton pump. J Cell Sci 127(Pt 23):4987–4993.  https://doi.org/10.1242/jcs.158550. Review. PubMed PMID: 25453113CrossRefPubMedGoogle Scholar
  85. Mercurio FA, Marasco D, Pirone L, Pedone EM, Pellecchia M, Leone M (2012) Solution structure of the first sam domain of odin and binding studies with the epha2 receptor. Biochemistry 51:2136–2145PubMedPubMedCentralCrossRefGoogle Scholar
  86. Mitchell RA, Luwor RB, Burgess AW (2018) The Epidermal Growth Factor Receptor: Structure-Function Informing the Design of Anticancer Therapeutics. Exp Cell Res pii: S0014-4827(18):30635–30639.  https://doi.org/10.1016/j.yexcr.2018.08.009. [Epub ahead of print] Review. PubMed PMID: 30098332PubMedCrossRefGoogle Scholar
  87. Mohanty S, Oruganty K, Kwon A, Byrne DP, Ferries S, Ruan Z, Hanold LE, Katiyar S, Kennedy EJ, Eyers PA, Kannan N (2016) Hydrophobic core variations provide a structural framework for Tyrosine Kinase evolution and functional specialization. PLoS Genet 12(2):e1005885.  https://doi.org/10.1371/journal.pgen.1005885. eCollection 2016 Feb. Erratum in: PLoS Genet. 2016 Aug;12(8):e1006265. PubMed PMID: 26925779; PubMed Central PMCID: PMC4771162CrossRefPubMedPubMedCentralGoogle Scholar
  88. Molineros JE, Yang W, Zhou XJ, Sun C, Okada Y, Zhang H, Chua K. H, Lau YL, Kochi Y, Suzuki A, Yamamoto K, Ma J, Bang SY, Lee HS, Kim K, Bae SC, Zhang H, Shen N, Looger LL, Nath SK (2017) Confirmation of five novel susceptibility loci for Systemic Lupus Erythematosus (SLE) and integrated network analysis of 82 SLE susceptibility loci. Hum Mol Genet pii: ddx026Google Scholar
  89. Mosavi LK, Cammett TJ, Desrosiers DC, Peng Z (2004) The ankyrin repeat as molecular architecture for protein recognition. Protein Sci 13:1435–1448PubMedPubMedCentralCrossRefGoogle Scholar
  90. Nanavati D, Austin DR, Catapano LA, Luckenbaugh DA, Dosemeci A, Manji HK et al (2011) The effects of chronic treatment with mood stabilizers on the rat hippocampal postsynaptic density proteome. J Neurochem 119:617–629PubMedPubMedCentralCrossRefGoogle Scholar
  91. Neubrand VE, Thomas C, Schmidt S, Debant A, Schiavo G (2010) Kidins220/ARMS regulates Rac1-dependent neurite outgrowth by direct interaction with the RhoGEF Trio. J Cell Sci 123:2111–2123PubMedCrossRefGoogle Scholar
  92. Neubrand VE, Cesca F, Benfenati F, Schiavo G (2012) Kidins220/ARMS as a functional mediator of multiple receptor signalling pathways. J Cell Sci 125:1845–1854PubMedCrossRefGoogle Scholar
  93. Niedergang F, Grinstein S 2018 How to build a phagosome: new concepts for an old process. Curr Opin Cell Biol 50:57–63.  https://doi.org/10.1016/j.ceb.2018.01.009. Epub 2018 Feb 20. Review. PubMed PMID: 29471269PubMedCrossRefGoogle Scholar
  94. Oka Y, Butnaru M, von Buchholtz L, Ryba NJP, Zuker CS (2013) High salt recruits aversive taste pathways. Nature 494:472–475PubMedPubMedCentralCrossRefGoogle Scholar
  95. Park S (2016) Defective Anks1a disrupts the export of receptor tyrosine kinases from the endoplasmic reticulum. BMB Rep 49:651–652PubMedPubMedCentralCrossRefGoogle Scholar
  96. Park E, Kim N, Ficarro SB, Zhang Y, Lee BI, Cho A, Kim K, Park AKJ, Park WY, Murray B, Meyerson M, Beroukhim R, Marto JA, Cho J, Eck MJ (2015) Structure and mechanism of activity-based inhibition of the EGF receptor by Mig6. Nat Struct Mol Biol 22(9):703–711.  https://doi.org/10.1038/nsmb CrossRefPubMedPubMedCentralGoogle Scholar
  97. Park HH, Logette E, Raunser S, Cuenin S, Walz T, Tschopp J, Wu H (2007) Death domain assembly mechanism revealed by crystal structure of the oligomeric PIDDosome core complex. Cell 128:533–546PubMedPubMedCentralCrossRefGoogle Scholar
  98. Pesti S, Balázs A, Udupa R, Szabó B, Fekete A, Bőgel G, Buday L (2012) Complex formation of EphB1/Nck/Caskin1 leads to tyrosine phosphorylation and structural changes of the Caskin1 SH3 domain. Cell Commun Signal 10:36.  https://doi.org/10.1186/1478-811X-10-36 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Pfaender S, Sauer AK, Hagmeyer S, Mangus K, Linta L, Liebau S et al (2017) Zinc deficiency and low enterocyte zinc transporter expression in human patients with autism related mutations in SHANK3. Sci Rep 7:45190PubMedPubMedCentralCrossRefGoogle Scholar
  100. Pospich S, Kumpula EP, von der Ecken J, Vahokoski J, Kursula I, Raunser S (2017) Near-atomic structure of jasplakinolide-stabilized malaria parasite F-actin reveals the structural basis of filament instability. Proc Natl Acad Sci USA 114(40):10636–10641.  https://doi.org/10.1073/pnas.1707506114. Epub 2017 Sep 18. PubMed PMID: 28923924; PubMed Central PMCID: PMC5635891 CrossRefGoogle Scholar
  101. Qin H, Srinivasula SM, Wu G, Fernandez-Alnemri T, Alnemri ES, Shi Y (1999) Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature 399:549PubMedCrossRefGoogle Scholar
  102. Riedl SJ, Li W, Chao Y, Schwarzenbacher R, Shi Y (2005) Structure of the apoptotic protease-activating factor bound to ADP. Nature 434:926PubMedCrossRefGoogle Scholar
  103. Ringel R, Sologub M, Morozov YI, Litonin D, Cramer P, Temiakov D (2011) Structure of human mitochondrial RNA polymerase. Nature 478(7368):269–273.  https://doi.org/10.1038/nature10435. PubMed PMID: 21947009PubMedCrossRefGoogle Scholar
  104. Ruba A, Yang W (2016) O-GlcNAc-ylation in the nuclear pore complex. Cell Mol Bioeng 9(2):227–233.  https://doi.org/10.1007/s12195-016-0440-0. Epub 2016 Apr 26. PubMed PMID: 28638491; PubMed Central PMCID: PMC5475274PubMedPubMedCentralCrossRefGoogle Scholar
  105. Sainlos M, Tigaret C, Poujol C, Olivier NB, Bard L, Breillat C, Thiolon K, Choquet D, Imperiali B (2011) Biomimetic divalent ligands for the acute disruption of synaptic AMPAR stabilization. Nat Chem Biol 7:81–91PubMedCrossRefPubMedCentralGoogle Scholar
  106. Sarowar T, Grabrucker AM (2016) Actin-dependent alterations of dendritic spine morphology in shankopathies. Neural Plast 8051861Google Scholar
  107. Schaefer KN, Bonello TT, Zhang S, Williams CE, Roberts DM, McKay DJ, Peifer M (2018) Supramolecular assembly of the beta-catenin destruction complex and the effect of Wnt signaling on its localization, molecular size, and activity in vivo. PLoS Genet 14(4):e1007339.  https://doi.org/10.1371/journal.pgen.1007339. eCollection 2018 Apr. PubMed PMID: 29641560; PubMed Central PMCID: PMC5912785PubMedPubMedCentralCrossRefGoogle Scholar
  108. Schmidt H, Carter AP (2016) Review: structure and mechanism of the dynein motor ATPase. Biopolymers 105(8):557–567.  https://doi.org/10.1002/bip.22856 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Schmieg N, Menendez G, Schiavo G, Terenzio M (2014) Signalling endosomes in axonal transport: travel updates on the molecular highway. Semin Cell Dev Biol 27:32–43PubMedCrossRefGoogle Scholar
  110. Semela D (2017) Hepatitis C – Diagnostik und Therapie. Ther Umsch 74(3):101–108.  https://doi.org/10.1024/0040-5930/a000892. German. PubMed PMID: 28777053PubMedCrossRefGoogle Scholar
  111. Shelby SJ, Colwill K, Dhe-Paganon S, Pawson T, Thompson DA (2013) MERTK interactions with SH2-domain proteins in the retinal pigment epithelium. PLoS One 8(2):e53964.  https://doi.org/10.1371/journal.pone.0053964. Epub 2013 Feb 4. PubMed PMID: 23390493; PubMed Central PMCID: PMC3563642PubMedPubMedCentralCrossRefGoogle Scholar
  112. Sheng M, Hoogenraad CC (2007) The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu Rev Biochem 76:823–847PubMedCrossRefGoogle Scholar
  113. Singh VB, Wooten AK, Jackson JW, Maggirwar SB, Kiebala M (2015) Investigating the role of ankyrin-rich membrane spanning protein in Human Immunodeficiency Virus Type-1 Tat-induced microglia activation. J Neurovirol 21:186–198PubMedPubMedCentralCrossRefGoogle Scholar
  114. Soldati-Favre D (2008) Molecular dissection of host cell invasion by the apicomplexans: the glideosome. Parasite 15:197–205PubMedCrossRefGoogle Scholar
  115. Sullivan JM, Zimanyi CM, Aisenberg W, Bears B, Chen D-H, Day JW et al (2015) Novel mutations highlight the key role of the ankyrin repeat domain in TRPV4-mediated neuropathy. Neurology: Genetics 1:e29Google Scholar
  116. Suzuki T, Li W, Zhang JP, Tian QB, Sakagami H, Usuda N, Kondo H, Fujii T, Endo S (2005) A novel scaffold protein, TANC, possibly a rat homolog of Drosophila rolling pebbles (rols), forms a multiprotein complex with various postsynaptic density proteins. Eur J Neurosci 21:339–350PubMedCrossRefGoogle Scholar
  117. Tabuchi K, Biederer T, Butz S, Sudhof TC (2002) CASK participates in alternative tripartite complexes in which Mint 1 competes for binding with caskin 1, a novel CASK-binding protein. J Neurosci 22:4264–4273PubMedCrossRefGoogle Scholar
  118. Takáts S, Glatz G, Szenci G, Boda A, Horváth GV, Hegedus K, Kovács AL, Juhász G (2018) Non-canonical role of the SNARE protein Ykt6 in autophagosome-lysosome fusion. PLoS Genet. 14(4): e1007359.  https://doi.org/10.1371/journal.pgen.1007359. eCollection 2018 Apr. PubMed PMID: 29694367; PubMed Central PMCID: PMC5937789PubMedPubMedCentralCrossRefGoogle Scholar
  119. Tamura Y, Kawano S, Endo T (2018) Organelle contact zones as sites for lipid transfer. J Biochem  https://doi.org/10.1093/jb/mvy088. [Epub ahead of print] PubMed PMID: 30371789CrossRefGoogle Scholar
  120. Tao-Cheng J-H, Yang Y, Reese TS, Dosemeci A (2015) Differential Distribution of Shank and GKAP at the Postsynaptic Density. PLoS ONE 10:e0118750PubMedPubMedCentralCrossRefGoogle Scholar
  121. Tchesnokov EP, Raeisimakiani P, Ngure M, Marchant D, Götte M (2018) Recombinant RNA-dependent RNA polymerase complex of Ebola Virus. Sci Rep 8(1):3970.  https://doi.org/10.1038/s41598-018-22328-3. PubMed PMID: 29507309; PubMed Central PMCID: PMC5838098
  122. Tindi JO, Chávez AE, Cvejic S, Calvo-Ochoa E, Castillo PE, Jordan BA (2015) ANKS1B gene product AIDA-1 controls hippocampal synaptic transmission by regulating GluN2B subunit localization. J Neurosci 35:8986–8996.  https://doi.org/10.1523/JNEUROSCI.4029-14.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Tomasetti C, Iasevoli F, Buonaguro EF, De Berardis D, Fornaro M, Fiengo ALC et al (2017) Treating the synapse in major psychiatric disorders: the role of postsynaptic density network in dopamine-glutamate interplay and psychopharmacologic drugs molecular actions. Int J Mol Sci 18:135PubMedCentralCrossRefPubMedGoogle Scholar
  124. Tseng WC, Jenkins PM, Tanaka M, Mooney R, Bennett V (2015) Giant ankyrin-G stabilizes somatodendritic GABAergic synapses through opposing endocytosis of GABAA receptors. Proc Natl Acad Sci USA 112:1214–1219PubMedCrossRefGoogle Scholar
  125. Uddin MS, Mamun AA, Labu ZK, Hidalgo-Lanussa O, Barreto GE, Ashraf GM (2018) Autophagic dysfunction in Alzheimer’s disease: cellular and molecular mechanistic approaches to halt Alzheimer’s pathogenesis. J Cell Physiol  https://doi.org/10.1002/jcp.27588. [Epub ahead of print] Review. PubMed PMID: 30362531PubMedCrossRefGoogle Scholar
  126. Wang C, Wei Z, Chen K, Ye F, Yu C, Bennett V, Zhang M (2014) Structural basis of diverse membrane target recognitions by ankyrins. eLife 3:e04353PubMedCentralCrossRefPubMedGoogle Scholar
  127. Welbourn EM, Wilson MT, Yusof A, Metodiev MV, Cooper CE (2017) The mechanism of formation, structure and physiological relevance of covalent hemoglobin attachment to the erythrocyte membrane. Free Radic Biol Med 103:95–106.  https://doi.org/10.1016/j.freeradbiomed.2016.12.024. Epub 2016 Dec 20. PubMed PMID: 28007575; PubMed Central PMCID: PMC5282401PubMedCrossRefGoogle Scholar
  128. Willis BC, Ponce-Balbuena D, Jalife J (2015) Protein assemblies of sodium and inward rectifier potassium channels control cardiac excitability and arrhythmogenesis. Am J Physiol Heart and Circ Physiol 308:H1463–H1473CrossRefGoogle Scholar
  129. Won S, Levy JM, Nicoll RA, Roche KW (2017) MAGUKs: multifaceted synaptic organizers. Curr Opin Neurobiol 43:94–101PubMedPubMedCentralCrossRefGoogle Scholar
  130. Xu M, Cooper EC (2015) An ankyrin-G N-terminal gate and protein kinase CK2 dually regulate binding of voltage-gated Sodium and KCNQ2/3 Potassium channels. J Biol Chem 290:16619–16632PubMedPubMedCentralCrossRefGoogle Scholar
  131. Yan N, Chai J, Lee ES, Gu L, Liu Q, He J, Wu JW, Kokel D, Li H, Hao Q, Xue D, Shi Y (2005) Structure of the CED-4-CED-9 complex provides insights into programmed cell death in Caenorhabditis elegans. Nature 437(7060):831–837. PubMed PMID: 16208361PubMedCrossRefGoogle Scholar
  132. Yao I, Hata Y, Hirao K, Deguchi M, Ide N, Takeuchi M, Takai Y (1999) Synamon, a novel neuronal protein interacting with synapse-associated protein 90/postsynaptic density-95-associated protein. J Biol Chem 274:27463–27466PubMedCrossRefGoogle Scholar
  133. Yoshimura T, Stevens SR, Leterrier C, Stankewich MC, Rasband MN (2016) Developmental changes in expression of βIV spectrin splice variants at axon initial segments and nodes of Ranvier. Front Cell Neurosci 10:304PubMedGoogle Scholar
  134. Yu X, Acehan D, Ménétret JF, Booth CR, Ludtke SJ, Riedl SJ, Shi Y, Wang X, Akey CW (2005) A structure of the human apoptosome at 12.8 A resolution provides insights into this cell death platform. Structure 13(11):1725–1735. PubMed PMID: 16271896PubMedCrossRefGoogle Scholar
  135. Zamani MR, Aslani S, Salmaninejad A, Javan MR, Rezaei N (2016) PD-1/PD-L and autoimmunity: a growing relationship. Cell Immunol 10:27–41CrossRefGoogle Scholar
  136. Zhang X, Bennett V (1996) Identification of O-linked N-acetylglucosamine modification of ankyrinG isoforms targeted to nodes of Ranvier. J Biol Chem 271(49):31391–31398PubMedCrossRefGoogle Scholar
  137. Zheng X, Kuang Y, Lv W, Cao D, Sun Z, Sun X (2016) Genome-wide association study for muscle fat content and abdominal fat traits in common carp (Cyprinus carpio). PLoS ONE 11:e0169127PubMedPubMedCentralCrossRefGoogle Scholar
  138. Zheng Y-L, Li B-S, Rudrabhatla P, Shukla V, Amin ND, Maric D, Kesavapany S, Kanungo J, Pareek TK, Takahashi S, Grant P, Kulkarni AB, Pant HC (2010) Phosphorylation of p27Kip1 at Thr187 by Cyclin-dependent Kinase 5 modulates neural stem cell differentiation. Mol Biol Cell 21:3601–3614PubMedPubMedCentralCrossRefGoogle Scholar
  139. Zhou P, Chou J, Sanchez O, Yuan J, Wagner G (1999) Solution structure of Apaf-1 CARD and its interaction with caspase-9 CARD: A structural basis for specific adaptorycaspase interaction. Proc Natl Acad Sci 96:11265–11270PubMedCrossRefGoogle Scholar
  140. Zynda ER, Grimm MJ, Yuan M, Zhong L, Mace TA, Capitano M et al (2015) A role for the thermal environment in defining co-stimulation requirements for CD4+ T cell activation. Cell Cycle 14:2340–2354PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Natalya Kurochkina
    • 1
  1. 1.Department of BiophysicsSchool of Theoretical ModelingWashington, DCUSA

Personalised recommendations