Advertisement

Conformational Transitions

  • Natalya Kurochkina
Chapter

Abstract

Protein molecules are dynamic bodies. They form and disassemble complexes, channel substrates, and rotate, changing conformational states to perform their functions. Small motions in the enzyme active site, large rearrangements of subunits and sliding along the filaments involve conformations changes.

Conformational transitions occur in many forms: change in orientation of hemoglobin subunits in oxygenated/deoxygenated states, proteolytic cleavage and conversion of precursors to mature molecules of fibrin/fibrinogen, helix coil transitions or changes between left handed and right handed orientation of helices.

The transitions of the molecule or molecular assembly largely depend on conformational changes of the constituent parts, amino acids. Rotameric states of the backbone and side chains change and these changes add up and propagate to provide large scale motions of the molecular parts. Micro motions and macro motions provide basis for conformational transitions.

Keywords

Protein conformation Amino acid Dynamics Switch Fluctuation 

References

  1. Alvarez BH, Gruber M, Ursinus A, Dunin-Horkawicz S, Lupas AN, Zeth K (2010) A transition from strong right-handed to canonical left-handed supercoiling in a conserved coiled-coil segment of trimeric autotransporter adhesins. J Struct Biol 170(2):236–245.  https://doi.org/10.1016/j.jsb.2010.02.009. Epub 2010 Feb 21. PubMed PMID: 20178846CrossRefPubMedGoogle Scholar
  2. Binukumar BK, Shukla V, Amin ND, Reddy P, Skuntz S, Grant P, Pant HC (2013) Topographic regulation of neuronal intermediate filaments by phosphorylation, role of peptidyl-prolyl isomerase 1: significance in neurodegeneration. Histochem Cell Biol 140(1):23–32.  https://doi.org/10.1007/s00418-013-1108-7 CrossRefPubMedGoogle Scholar
  3. Bodey AJ, Kikkawa M, Moores CA (2009) 9-Angström structure of a microtubule-bound mitotic motor. J Mol Biol 388(2):218–224.  https://doi.org/10.1016/j.jmb.2009.03.008. Epub 2009 Mar 10. PubMed PMID: 19285086CrossRefPubMedGoogle Scholar
  4. Boudker O, Ryan RM, Yernool D, Shimamoto K, Gouaux E (2007) Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 445(7126):387–393. Epub 2007 Jan 17. PubMed PMID: 17230192CrossRefGoogle Scholar
  5. Boumil EF, Vohnoutka R, Lee S, Pant H, Shea TB (2018) Assembly and turnover of neurofilaments in growing axonal neurites. Biol Open 7(1). pii: bio028795).  https://doi.org/10.1242/bio.028795 CrossRefGoogle Scholar
  6. Brown PN, Hill CP, Blair DF (2002) Crystal structure of the middle and C-terminal domains of the flagellar rotor protein FliG. EMBO J 21(13):3225–3234. PubMed PMID: 12093724; PubMed Central PMCID: PMC126082CrossRefGoogle Scholar
  7. Cox K, Combs B, Abdelmesih B, Morfini G, Brady ST, Kanaan NM (2016) Analysis of isoform-specific tau aggregates suggests a common toxic mechanism involving similar pathological conformations and axonal transport inhibition. Neurobiol Aging 47:113–126.  https://doi.org/10.1016/j.neurobiolaging.2016.07.015 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fermi G, Perutz MF, Shaanan B, Fourme R (1984) The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. J Mol Biol 175(2):159–174. PubMed PMID: 6726807CrossRefGoogle Scholar
  9. Ferofontov A, Strulovich R, Marom M, Giladi M, Haitin Y (2018) Inherent flexibility of CLIC6 revealed by crystallographic and solution studies. Sci Rep 8(1):6882.  https://doi.org/10.1038/s41598-018-25231-z. PubMed PMID: 29720717; PubMed Central PMCID: PMC5931990CrossRefPubMedPubMedCentralGoogle Scholar
  10. Groves MR, Hanlon N, Turowski P, Hemmings BA, Barford D (1999) The structure of the PROTEIN Phosphatase 2A PR65/A Subunit Reveals the Conformation of Its 15 Tandemly Repeated HEAT Motifs. Cell 96:99–110CrossRefGoogle Scholar
  11. Hall BE, Prochazkova M, Sapio MR, Minetos P, Kurochkina N, Binukumar BK, Amin ND, Terse A, Joseph J, Raithel SJ, Mannes AJ, Pant HC, Chung MK, Iadarola MJ, Kulkarni AB (2018) Phosphorylation of the Transient Receptor Potential Ankyrin 1 by Cyclin-dependent Kinase 5 affects Chemo-nociception. Sci Rep 8(1):1177.  https://doi.org/10.1038/s41598-018-19532-6. PubMed PMID: 29352128; PubMed Central PMCID: PMC5775258CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hayashi MK (2018) Structure-Function Relationship of Transporters in the Glutamate-Glutamine Cycle of the Central Nervous System. Int J Mol Sci 19(4):pii: E1177.  https://doi.org/10.3390/ijms19041177. Review. PubMed PMID: 29649168; PubMed Central PMCID: PMC5979278CrossRefGoogle Scholar
  13. Huang L, Hsiao JP, Powierza C, Taylor RM 2nd, Lord ST (2014) Does topology drive fiber polymerization? Biochemistry 53(49):7824–7834.  https://doi.org/10.1021/bi500986z. Epub 2014 Dec 5. PubMed PMID: 25419972; PubMed Central PMCID: PMC4270379CrossRefPubMedPubMedCentralGoogle Scholar
  14. Huber AH, Nelson WJ, Weis WI (1997) Three-Dimensional Structure of the Armadillo Repeat Region of b-Catenin. Cell 90:871–882CrossRefGoogle Scholar
  15. Ikeda K, Yamamoto R, Wirschell M, Yagi T, Bower R, Porter ME, Sale WS, Kamiya R (2009) A novel ankyrin-repeat protein interacts with the regulatory proteins of inner arm dynein f (I1) of Chlamydomonas reinhardtii. Cell Motil Cytoskeleton 66(8):448–456.  https://doi.org/10.1002/cm.20324. PubMed PMID: 19021242; PubMed Central PMCID: PMC3102495CrossRefPubMedPubMedCentralGoogle Scholar
  16. Joe PA, Banerjee A, Ludueña RF (2009) Roles of beta-tubulin residues Ala428 and Thr429 in microtubule formation in vivo. J Biol Chem 284(7):4283–4291.  https://doi.org/10.1074/jbc.M807491200. Epub 2008 Dec 13. PubMed PMID: 19074767; PubMed Central PMCID: PMC3837401CrossRefPubMedGoogle Scholar
  17. Kaplan E, Zubedat S, Radzishevsky I, Valenta AC, Rechnitz O, Sason H, Sajrawi C, Bodner O, Konno K, Esaki K, Derdikman D, Yoshikawa T, Watanabe M, Kennedy RT, Billard JM, Avital A, Wolosker H (2018) ASCT1 (Slc1a4) transporter is a physiologic regulator of brain d-serine and neurodevelopment. Proc Natl Acad Sci U S A. 115(38):9628–9633.  https://doi.org/10.1073/pnas.1722677115. Epub 2018 Sep 5. PubMed PMID: 30185558; PubMed Central PMCID: PMC6156681CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kellogg EH, Hejab NMA, Poepsel S, Downing KH, DiMaio F, Nogales E (2018) Near-atomic model of microtubule-tau interactions. Science 360(6394):1242–1246.  https://doi.org/10.1126/science.aat1780. Epub 2018 May 10. PubMed PMID: 29748322CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kurochkina N, Bhaskar M, Yadav SP, Pant HC (2018) Phosphorylation, Dephosphorylation, and multiprotein assemblies regulate dynamic behavior of neuronal cytoskeleton: a mini-review. Front Mol Neurosci 11:373.  https://doi.org/10.3389/fnmol.2018.00373. eCollection 2018. PubMed PMID: 30349458; PubMed Central PMCID: PMC6186834CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kurochkina N, Choekyi T (2011) Helix-helix interfaces and ligand binding. J Theor Biol 283:92–102CrossRefGoogle Scholar
  21. Leo JC, Lyskowski A, Hattula K, Hartmann MD, Schwarz H, Butcher SJ, Linke D, Lupas AN, Goldman A (2011) The structure of E. coli IgG-binding protein D suggests a general model for bending and binding in trimeric autotransporter adhesins. Structure 19(7):1021–1030. doi:  https://doi.org/10.1016/j.str.2011.03.021. PubMed PMID: 21742268CrossRefGoogle Scholar
  22. Littler DR, Harrop SJ, Fairlie WD, Brown LJ, Pankhurst GJ, Pankhurst S, DeMaere MZ, Campbell TJ, Bauskin AR, Tonini R, Mazzanti M, Breit SN, Curmi PMG (2004) The intracellular chloride ion channel protein CLIC1 undergoes a redox-controlled structural transition. J Biol Chem 279:9298–9305CrossRefGoogle Scholar
  23. Mynott AV, Harrop SJ, Brown LJ, Breit SN, Kobe B, Curmi PM (2011) Crystal structure of importin-a bound to a peptide bearing the nuclear localisation signal from chloride intracellular channel protein 4. FEBS J 278(10):1662–1675.  https://doi.org/10.1111/j.1742-4658.2011.08086.x. Epub 2011 Mar 30. PubMed PMID: 21388519CrossRefGoogle Scholar
  24. Oder E, Safo MK, Abdulmalik O, Kato GJ (2016) New developments in anti-sickling agents: can drugs directly prevent the polymerization of sickle haemoglobin in vivo? Br J Haematol 175(1):24-30.  https://doi.org/10.1111/bjh.14264. Epub 2016 Sep 8. Review. PubMed PMID: 27605087; PubMed Central PMCID: PMC5035193CrossRefGoogle Scholar
  25. Prota AE, Bargsten K, Zurwerra D, Field JJ, Díaz JF, Altmann KH, Steinmetz MO (2013) Molecular mechanism of action of microtubule-stabilizing anticancer agents. Science 339(6119):587–590.  https://doi.org/10.1126/science.1230582. Epub 2013 Jan 3. PubMed PMID: 23287720CrossRefGoogle Scholar
  26. Rudrabhatla P, Albers W, Pant HC (2009) Peptidyl-Prolyl Isomerase 1 regulates protein phosphatase 2A-mediated topographic phosphorylation of neurofilament proteins. J Neurosci 29(47):14869–14880.  https://doi.org/10.1523/JNEUROSCI.4469-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Schmidt H, Carter AP (2016) Review: structure and mechanism of the dynein motor ATPase. Biopolymers 105(8):557–567.  https://doi.org/10.1002/bip.22856 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Stella S, Molina R, López-Méndez B, Juillerat A, Bertonati C, Daboussi F, Campos-Olivas R, Duchateau P, Montoya G (2014) BuD, a helix-loop-helix DNA-binding domain for genome modification. Acta Crystallogr D Biol Crystallogr 70(Pt 7):2042–2052.  https://doi.org/10.1107/S1399004714011183. Epub e2014 Jun 29. PubMed PMID: 25004980; PubMed Central PMCID: PMC4089491 CrossRefGoogle Scholar
  29. Ueno H, Yasunaga T, Shingyoji C, Hirose K (2008) Dynein pulls microtubules without rotating its stalk. Proc Natl Acad Sci U S A 105(50):19702–19707.  https://doi.org/10.1073/pnas.0808194105. Epub 2008 Dec 8. PubMed PMID: 19064920; PubMed Central PMCID: PMC2604933CrossRefGoogle Scholar
  30. van den Heuvel MG, Dekker C (2007) Motor proteins at work for nanotechnology. Science 317(5836):333–6. Review. PubMed PMID: 17641191.PMID: 17641191CrossRefGoogle Scholar
  31. Verdon G, Oh S, Serio RN, Boudker O (2014)Coupled ion binding and structural transitions along the transport cycle of glutamate transporters. Elife 3:e02283.  https://doi.org/10.7554/eLife.02283. PubMed PMID: 24842876; PubMed Central PMCID: PMC4051121
  32. Yakovlev S, Makogonenko E, Kurochkina N, Nieuwenhuizen W, Ingham K, Medved L (2000) Conversion of fibrinogen to fibrin: mechanism of exposure for tPA-plasminogen binding site. Biochemistry 39:15730CrossRefGoogle Scholar
  33. Wu H, Maciejewski MW, Marintchev A, Benashski SE, Mullen GP, King SM (2000) Solution structure of a dynein motor domain associated light chain. Nat Struct Biol 7(7):575–579. PubMed PMID: 10876244Google Scholar
  34. Zhmurov A, Protopopova AD, Litvinov RI, Zhukov P, Mukhitov AR, Weisel JW, Barsegov V (2016) Structural basis of interfacial flexibility in fibrin oligomers. Structure 24(11):1907–1917.  https://doi.org/10.1016/j.str.2016.08.009. Epub 2016 Sep 29. PubMed PMID: 27692965; PubMed Central PMCID: PMC5240993CrossRefGoogle Scholar
  35. Zhou GP (2011) The structural determinations of the leucine zipper coiled-coil domains of the cGMP-dependent protein kinase I alpha and its interaction with the myosin binding subunit of the myosin light chains phosphase. Proteins Pept Lett 18:966–978CrossRefGoogle Scholar
  36. Zhou GP, Huang RB (2013) The pH-Triggered Conversion of the PrP(c) to PrP(sc.). Curr Top Med Chem 13:1152–1163CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Natalya Kurochkina
    • 1
  1. 1.Department of BiophysicsSchool of Theoretical ModelingWashington, DCUSA

Personalised recommendations