Skip to main content

Proteins and Protein Structure

  • Chapter
  • First Online:
Protein Structure and Modeling
  • 1346 Accesses

Abstract

Proteins such as enzymes, channels, signaling molecules and adaptors carry out important functions in living organisms. Fibrous and globular proteins comprise two large groups. Long stretches of coiled coil Ī±-helices in fibers and fibrils, triple helices of collagen , and globular heme binding subunits of hemoglobin give us main representatives and show how diverse these moleculesĀ are. Protein polypeptide chain exhibits left-handed and right handed, parallel and antiparallel arrangements of secondary structure elements such as alpha, 310 , polyproline, gamma and pi helices, strands and turns. This chapter describes structural principles of protein molecule, its conformation and relationships between primary, secondary, tertiary, and quaternary structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam A, Haberhauer G, Wƶlper C (2017) Bio-inspired herringbone foldamers: strategy for changing the structure of helices. J Org Chem 82(8):4203ā€“4215. https://doi.org/10.1021/acs.joc.7b00185. Epub 2017 Apr 12

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Adam C, Peters AD, Lizio MG, Whitehead GFS, Diemer V, Cooper JA, Cockroft SL, Clayden J, Webb SJ (2018) The Role of terminal functionality in the membrane and antibacterial activity of peptaibol-mimetic aib foldamers. Chemistry 24(9):2249ā€“2256. https://doi.org/10.1002/chem.201705299. Epub 2018 Jan 17. PubMed PMID: 29210477

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Aggeli A, Nyrkova IA, Bell M, Harding R, Carrick L, McLeish TCB, Semenov AN, Boden N (2001) Hierarchical self-assembly of chiral rod-like molecules as a model for peptide beta -sheet tapes, ribbons, fibrils, and fibers. Proc Natl Acad Sci USA 98:11857ā€“11862

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ago H, Kanaoka AH, Irikura D et al (2007) Crystal structure of a human membrane protein involved in cysteinyl leukotriene biosynthesis. Nature 448:609ā€“612

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • De Alba E (2009) Structure and interdomain dynamics of apoptosis-associated speck-like protein containing a CARD (ASC). J Biol Chem 284:32932ā€“32941

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Al Khamici H, Hossain KR, Cornell BA, Valenzuela SM (2016) Investigating sterol and redox regulation of the ion channel activity of CLIC1 using tethered bilayer membranes. Membranes (Basel). 6(4). pii: E51. PubMed PMID: 27941637; PubMed Central PMCID: PMC5192407

    ArticleĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Alushin GM, Ramey VH, Pasqualato S, Ball DA, Grigorieff N, Musacchio A, Nogales E (2010) The Ndc80 kinetochore complex forms oligomeric arrays along microtubules. Nature 467:805ā€“810

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Alvarez BH, Gruber M, Ursinus A, Dunin-Horkawicz S, Lupas AN, Zeth K (2010) A transition from strong right-handed to canonical left-handed supercoiling in a conserved coiled-coil segment of trimeric autotransporter adhesins. J Struct Biol 170(2):236ā€“245. https://doi.org/10.1016/j.jsb.2010.02.009. Epub 2010 Feb 21. PubMed PMID: 20178846

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Andrade MA, Perez-Iratxeta C, Ponting CP (2001) Protein repeats: structures, functions, and evolutions. J Struct Biol 134:117ā€“131

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Andrews SC, Smith JM, Guest JR, Harrison PM (1989) Amino acid sequence of the bacterioferritin (cytochrome b1) of Escherichia coli-K12. Biochem Biophys Res Commun 158(2):489ā€“496. PubMed PMID: 2644932

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Aravinda S, Shamala N, Balaram P (2008) Aib residues in peptaibiotics and synthetic sequences: analysis of nonhelical conformations. Chem Biodivers 5(7):1238ā€“1262. https://doi.org/10.1002/cbdv.200890112

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Arcy SD, Davies OR, Blundell TL, Bolanos-Garcia VM (2010) Defining the molecular basis of BubR1 kinetochore interactions and APC/C-CDC20 inhibition. J Biol Chem 285:14764ā€“14776

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Balasco N, Smaldone G, Ruggiero A, De Simone A, Vitagliano L (2018) Local structural motifs in proteins: Detection and characterization of fragments inserted in helices. Int J Biol Macromol. pii: S0141-8130(18)32822ā€“32828. https://doi.org/10.1016/j.ijbiomac.2018.07.047. [Epub ahead of print] PubMed PMID: 30017977

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Balashova TA, Shenkarev ZO, Tagaev AA, Ovchinnikova TV, Raap J, Arseniev AS (2000) NMR structure of the channel-former zervamicin IIB in isotropic solvents. FEBS Lett 466(2-3):333ā€“336. PubMed PMID: 10682854

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Banci L, Bertini I, Cefaro C, Ciofi-Baffoni S, Gallo A (2011) Functional role of two interhelical disulfide bonds in human Cox17 protein from a structural perspective. J Biol Chem 286(39):34382ā€“34390. https://doi.org/10.1074/jbc.M111.246223. Epub 2011 Aug 4. PubMed PMID: 21816817; PubMed Central PMCID: PMC3190761

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Banner DW, Kokkinidis M, Tsernoglou D (1987) Structure of the ColE1 rop protein at 1.7 A resolution. J Mol Biol 196(3):657ā€“675. PubMed PMID: 3681971

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Barua B (2013) Periodicities designed in the tropomyosin sequence and structure define its functions. Bioarchitecture 3(3):51ā€“56. https://doi.org/10.4161/bioa.2561

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Berisio R, Vitagliano L (2012) Polyproline and triple helix motifs in host-pathogen recognition. Curr Protein Pept Sci 13(8):855ā€“865. https://doi.org/10.2174/138920312804871157

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bhyravbhatla B, Watowich SJ, Caspar DL (1998) Refined atomic model of the four-layer aggregate of the tobacco mosaic virus coat protein at 2.4-ƅ resolution. Biophys J 74:604ā€“615

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Blatch GL, Lassle M (1999) The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioassays 21:932ā€“939

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Boscutti G, Nardon C, MarchiĆ² L, Crisma M, Biondi B, Dalzoppo D, Dalla Via L, Formaggio F, Casini A, Fregona D (2018) Anticancer gold(III) peptidomimetics: from synthesis to in vitro and ex vivo biological evaluation. ChemMedChem. https://doi.org/10.1002/cmdc.201800098. [Epub ahead of print] PubMed PMID: 29570944

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Boudko SP, BƤchinger HP (2016) Structural insight for chain selection and stagger control in collagen. Sci Rep 6:37831. https://doi.org/10.1038/srep37831

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Branden, C., Tooze, J (1991) Introduction to protein structure.

    Google ScholarĀ 

  • Brennan SO (2015) Variation of fibrinogen oligosaccharide structure in the acute phase response: possible haemorrhagic implications. BBA Clinical 3:221ā€“226. https://doi.org/10.1016/j.bbacli.2015.02.007

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Brinkmann U, Di Carlo A, Vasmatzis G, Kurochkina N, Beers R, Lee B, Pastan I (1997) Stabilization of a recombinant Fv fragment by base loop interconnection and VH-VL permutation. J Mol Biol 268:107ā€“117

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Brunner JD, Lim NK, Schenck S, Duerst A, Dutzler R (2014) X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature 516(7530):207ā€“212. https://doi.org/10.1038/nature13984. Epub 2014 Nov 12. PubMed PMID: 25383531

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bunick CG, Milstone LM (2017) The X-ray crystal structure of the keratin 1-keratin 10 helix 2B heterodimer reveals molecular surface properties and biochemical insights into human skin disease. J Invest Dermatol;137(1):142ā€“150.: https://doi.org/10.1016/j.jid.2016.08.018. Epub 2016 Sep 3.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Burgess AW, Leach SJ (1973) An obligatory alpha-helical amino acid residue. Biopolymers 12(11):2599ā€“2605. PubMed PMID: 4780721

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cabrele C, Langer M, Bader R, Wieland HA, Doods HN, Zerbe O, Beck-Sickinger AG (2000) The first selective agonist for the neuropeptide YY5 receptor increases food intake in rats. J Biol Chem 275(46):36043ā€“36048

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Caffrey M, Cai M, Kaufman J, Stahl SJ, Wingfield PT, Covell DG, Gronenborn AM, Clore GM (1998) Three-dimensional solution structure of the 44 kDa ectodomain of SIV gp41. Embo J 17:4572ā€“4584

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Cervantes-Madrid D, Dominguez-Gomez G, Gonzalez-Fierro A, Perez-Cardenas E, Taja-Chayeb L, Trejo-Becerril C, Duenas-Gonzalez A (2017) Feasibility and antitumor efficacy in vivo, of simultaneously targeting glycolysis, glutaminolysis and fatty acid synthesis using lonidamine, 6-diazo-5-oxo-L-norleucine and orlistat in colon cancer. Oncology Letters 13(3):1905ā€“1910. https://doi.org/10.3892/ol.2017.5615

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Chen Q, Wells MM, Arjunan P, Tillman TS, Cohen AE, Xu Y, Tang P (2018) Structural basis of neurosteroid anesthetic action on GABA(A) receptors. Nat Commun 9(1):3972. https://doi.org/10.1038/s41467-018-06361-4. PubMed PMID: 30266951; PubMed Central PMCID: PMC6162318

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Chingle R, Proulx C, Lubell WD (2017) Azapeptide synthesis methods for expanding side-chain diversity for biomedical applications. Acc Chem Res 50(7):1541ā€“1556. https://doi.org/10.1021/acs.accounts.7b00114. Epub 2017 Jun 9

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chothia C (1973) Conformation of twisted beta-pleated sheets in proteins. J Mol Biol 75:295ā€“302

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chothia C (1975) Structural invariants in protein folding. Nature 254:304ā€“308

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chothia C, Levitt M, Richardson D (1981) Helix to helix packing in proteins. J Mol Biol 145:215ā€“250

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chothia C, Janin J (1982) Orthogonal packing of beta-pleated sheets in proteins. Biochemistry 21(17):3955ā€“3965. PubMed PMID: 6751382

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chou KC (1988) Review: Low-frequency collective motion in biomacromolecules and its biological functions. Biophysical Chemistry 30:3ā€“48

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chou KC (1992) Energy-optimized structure of antifreeze protein and its binding mechanism. J Mol Biol 223:509ā€“517

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chou KC, Nemethy G, Scheraga HA (1990) Review: Energetics of interactions of regular structural elements in proteins. Acc Chem Res 23:134ā€“141

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Chou KC, Maggiora GM, Nemethy G, Scheraga HA (1988) Energetics of the structure of the four-alpha-helix bundle in proteins. Proc Natl Acad Sci USA 85:4295ā€“4299

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Chou KC, Maggiora GM, Scheraga HA (1992) The role of loop-helix interactions in stabilizing four-helix bundle proteins. Proc Natl Acad Sci USA 89:7315ā€“7319

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Cook JD, Soto-Montoya H, Korpela MK, Lee JE (2015) Electrostatic architecture of the Infectious Salmon Anemia Virus (ISAV) Core fusion protein illustrates a Carboxyl-Carboxylate pH Sensor. J Biol Chem 290(30):18495ā€“18504. https://doi.org/10.1074/jbc.M115.644781. Epub 2015 Jun 16. PubMed PMID: 26082488; PubMed Central PMCID: PMC4513110

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Cordopatis P, Manessi-Zoupa E, Theodoropoulos D, BossĆ© R, Bouley R, Gagnon S, Escher E (1994) Methylation in positions 1 and 7 of angiotensin II. A structure-activity relationship study. Int J Pept Protein Res 44(4):320ā€“324. PubMed PMID: 7875933

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Costil R, FernĆ”ndez-Nieto F, Atkinson RC, Clayden J (2018) Ī±-Methyl phenylglycines by asymmetric Ī±-arylation of alanine and their effect on the conformational preference of helical Aib foldamers. Org Biomol Chem doi: 10.1039/c8ob00551f. [Epub ahead of print] PubMed PMID: 29595846

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Crick F (1953) Acta Crystallogr 6:689

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Dadheech T, Shah R, Pandit R, Hinsu A, Chauhan PS, Jakhesara S, Kunjadiya A, Rank D, Joshi C (2018) Cloning, molecular modeling and characterization of acidic cellulase from buffalo rumen and its applicability in saccharification of lignocellulosic biomass. Int J Biol Macromol 113:73ā€“81. https://doi.org/10.1016/j.ijbiomac.2018.02.100. Epub 2018 Feb 15. PubMed PMID: 29454942

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Das T, HƤring M, Haldar D, DĆ­az DD (2017) Phenylalanine and derivatives as versatile low-molecular-weight gelators: design, structure and tailored function. Biomater Sci 6(1):38ā€“59. https://doi.org/10.1039/c7bm00882a. Review. PubMed PMID: 29164186

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Davies TG, Hubbard RE, Tame JR (1999) Relating structure to thermodynamics: the crystal structures and binding affinity of eight OppA-peptide complexes. Protein Sci 8(7):1432ā€“1444

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Dowling DP, Croft AK, Drennan CL (2012) Radical use of Rossmann and TIM barrel architectures for controlling coenzyme B12 chemistry. Annu Rev Biophys 41:403ā€“427. https://doi.org/10.1146/annurev-biophys-050511-102225. Review. PubMed PMID: 22577824

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dulhunty A, Gage P, Curtis S et al (2001) The glutathione transferase structural family includes a nuclear chloride channel and a ryanodine receptor calcium release channel modulator. J Biol Chem 276:3319ā€“3323

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Efimov AV (1979) Packing of alpha-helices in globular proteins. Layer-structure of globin hydrophobic cores. J Mol Biol 134(1):23ā€“40

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Elkin I, Maris T, Melkoumov A, Hildgen P, Banquy X, Leclair G, Barrett C (2018) Crystal structure of 2-oxopyrrolidin-3-yl 4-(2-phenyl-diazen-1-yl)benzoate. Acta Crystallogr E Crystallogr Commun 6;74(Pt 4):458ā€“460. doi: 10.1107/S205698901800333X. eCollection 2018 Apr 1. PubMed PMID: 29765745; PubMed Central PMCID: PMC5946967

    ArticleĀ  CASĀ  PubMed CentralĀ  Google ScholarĀ 

  • Eriksson M, Hassan S, Larsson R, Linder S, Ramqvist T, Lƶvborg H, Vikinge T, Figgemeier E, MĆ¼ller J, Stetefeld J, Dalianis T, Ozbek S (2009) Utilization of a right-handed coiled-coil protein from archaebacterium Staphylothermus marinus as a carrier for cisplatin. Anticancer Res 29(1):11ā€“18. PubMed PMID: 19331128

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Ferguson AD, Mckeever BM, Wisniewski D et al (2007) Crystal structure of inhibitor-bound human 5-lipoxygenase-activating protein. Science 317:510ā€“512

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ferner J, Suhartono M, Breitung S, Jonker HR, Hennig M, Wƶhnert J, Gƶbel M, Schwalbe H (2009) Structures of HIV TAR RNA-ligand complexes reveal higher binding stoichiometries. Chembiochem 10(9):1490ā€“1494. https://doi.org/10.1002/cbic.200900220

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ferrone FA (2016) Sickle cell disease: Its molecular mechanism and the one drug that treats it. Int J Biol Macromol 93(Pt A):1168ā€“1173. https://doi.org/10.1016/j.ijbiomac.2016.09.073. Epub 2016 Sep 22

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ferofontov A, Strulovich R, Marom M, Giladi M, Haitin Y (2018) Inherent flexibility of CLIC6 revealed by crystallographic and solution studies. Sci Rep 8(1):6882. https://doi.org/10.1038/s41598-018-25231-z. PubMed PMID: 29720717; PubMed Central PMCID: PMC5931990

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Fisher E (1901) Z Physiol Chem 33:151

    ArticleĀ  Google ScholarĀ 

  • Fisher E (1902) Chem Ber 35:2660

    ArticleĀ  Google ScholarĀ 

  • Formaggio F, Crisma M, Bonora GM, Pantano M, Valle G, Toniolo C, Aubry A, Bayeul D, Kamphuis J (1995) (R)-isovaline homo-peptides adopt the left-handed 3(10)-helical structure. Pept Res 8(1):6ā€“15. PubMed PMID: 7756755

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Fung T, Asiri YI, Wall R, Schwarz SKW, Puil E, MacLeod BA (2017) Variations of isovaline structure related to activity in the formalin foot assay in mice. Amino Acids 49(7):1203ā€“1213. https://doi.org/10.1007/s00726-017-2421-6. Epub 2017 Apr 21. PubMed PMID: 28432424

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gamlin CR, Yu WQ, Wong ROL, Hoon M (2018) Assembly and maintenance of GABAergic and Glycinergic circuits in the mammalian nervous system. Neural Dev 13(1):12. https://doi.org/10.1186/s13064-018-0109-6. Review. PubMed PMID: 29875009; PubMed Central PMCID: PMC5991458

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Gernert KM, Surles MC, Labean TH, Richardson JS, Richardson DC (1995) Alacoil: a very tight, antiparallel coiled-coil of helices. Protein Science 4:2252ā€“2260

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Goh KL, Holmes DF (2017) Collagenous extracellular matrix biomaterials for tissue engineering: lessons from the common sea urchin tissue. Int J Mol Sci 18(5):901. https://doi.org/10.3390/ijms18050901

    ArticleĀ  CASĀ  PubMed CentralĀ  Google ScholarĀ 

  • Gƶrbitz CH, Karen P, DuÅ”ek M, PetrĆ­cek V (2016) An exceptional series of phase transitions in hydrophobic amino acids with linear side chains. IUCrJ 3(Pt 5):341ā€“353. https://doi.org/10.1107/S2052252516010472

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Gord JR, Hewett DM, Hernandez-Castillo AO, Blodgett KN, Rotondaro MC, Varuolo A, Kubasik MA, Zwier TS (2016) Conformation-specific spectroscopy of capped, gas-phase Aib oligomers: tests of the Aib residue as a 310-helix former. Phys Chem Chem Phys 18(36):25512ā€“25527

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Grauer AA, Cabrele C, Zabel M, Kƶnig B (2009) Stable right- and left-handed peptide helices containing C(alpha)-tetrasubstituted alpha-amino acids. J Org Chem 74(10):3718ā€“3726. doi: https://doi.org/10.1021/jo900222g. PubMed PMID: 19354242

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Guerra ME, Fadel V, Maltarollo VG, Baldissera G, Honorio KM, Ruggiero JR, Dos Santos Cabrera MP (2017) MD simulations and multivariate studies for modeling the antileishmanial activity of peptides. Chem Biol Drug Des 2017 Mar 7. https://doi.org/10.1111/cbdd.12970. [Epub ahead of print]

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Gunning PW, Hardeman EC, Lappalainen P, Mulvihill DP (2015) Tropomyosin - master regulator of actin filament function in the cytoskeleton. J Cell Sci 128(16):2965ā€“2974. https://doi.org/10.1242/jcs.172502. Epub 2015 Aug 3

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Harbury PB, Zhang T, Kim PS, Alber T (1993) A switch between two-, three-. and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262(5138):1401ā€“1407

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Harbury PB, Plecs JJ, Tidor B, Alber T, Kim PS (1998) High-resolution protein design with backbone freedom. Science 282(5393):1462ā€“1467. PubMed PMID: 9822371

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Harris NL, Presnell SR, Cohen FE (1994) Four helix bundle diversity in proteins. J Mol Biol 236:1356ā€“1368

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Harrop SJ, DeMaere MZ, Fairlie WD et al (2001) Crystal structure of a soluble form of the intracellular chloride ion channel CLIC1 (NCC27) at 1.4-A resolution. J Biol Chem 276:44993ā€“45000

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Harsini FM, Chebrolu S, Fuson KL, White MA, Rice AM, Sutton RB (2018) FerA is a membrane-associating four-helix bundle domain in the Ferlin family of membrane-fusion proteins. Sci Rep;8(1):10949. https://doi.org/10.1038/s41598-018-29184-1. PubMed PMID: 30026467; PubMed Central PMCID: PMC6053371.

  • Hodges RS, Sodek J, Smillie LB et al (1972) Amino-acid sequence of rabbit skeletal tropomyosin and its coiled-coil structure. Proc Natl Acad Sci 69:3800ā€“3804

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hollman AL, Tchounwou PB, Huang HC (2016) The Association between gene-environment interactions and diseases involving the human GST superfamily with SNP variants. Int J Environ Res Public Health 13(4):379. https://doi.org/10.3390/ijerph13040379. Review. PubMed PMID: 27043589; PubMed Central PMCID: PMC4847041

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Holm PJ, Bhakat P, Jegerschold C, Gyobu N, Mitsuoka K, Fujiyoshi Y, Morgenstern R, Hebert H (2006) Structural basis for detoxification and oxidative stress protection in membranes. J Mol Biol 360:934ā€“945

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Holmes TC (2002) Novel peptide-based biomaterial scaffolds for tissue engineering. Trends Biotechnol 20(1):16ā€“21. Review. PubMed PMID: 11742673

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Holton A, Alber J (2004) Automated protein crystal structure determination using elves. Proc Natl Acad Sci 101:1537ā€“1542

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hou Q, Bourgeas R, Pucci F, Rooman M (2018) Computational analysis of the amino acid interactions that promote or decrease protein solubility. Sci Rep 8(1):14661. https://doi.org/10.1038/s41598-018-32988-w. PubMed PMID: 30279585; PubMed Central PMCID: PMC6168528

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Huber R, Romish J, Paques EP (1990) The crystal and molecular structure of human annexin V, an anticoagulant protein that binds to calcium and membranes. Embo J 9:3867ā€“3874

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ida M, Sato A, Matsumoto I et al (2004) Human annexin V binds to sulfatide: contribution to regulation of blood coagulation. J Mol Biol 135:583ā€“588

    CASĀ  Google ScholarĀ 

  • Ishitsuka R, Kojima K, Utsumi H et al (1998) Glycosaminoglycan Binding Properties of Annexin IV, V, and VI. J Biol Chem 273:9935ā€“9941

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Jaffe EK (2017) New protein structures provide an updated understanding of phenylketonuria. Mol Genet Metab 121(4):289ā€“296. https://doi.org/10.1016/j.ymgme.2017.06.005. Epub 2017 Jun 15. Review. PubMed PMID: 28645531; PubMed Central PMCID: PMC5549558

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Jeppesen MG, Ortiz P, Shepard W et al (2003) The Crystal Structure of the Glutathione S-Transferase-like Domain of Elongation Factor 1B from Saccharomyces cerevisiae. J Biol Chem 278:47190ā€“47198

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Jiang Q, Li K, Lu WJ, Li S, Chen X, Liu XJ, Yuan J, Ding Q, Lan F, Cai SQ (2018) Identification of small-molecule ion channel modulators in C. elegans channelopathy models. Nat Commun 9(1):3941. https://doi.org/10.1038/s41467-018-06514-5. PubMed PMID: 30258187; PubMed Central PMCID: PMC6158242

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Juncosa JI, Takaya K, Le HV, Moschitto MJ, Weerawarna PM, Mascarenhas R, Liu D, Dewey SL, Silverman RB (2018) Design and Mechanism of (S)-3-Amino-4-(difluoromethylenyl)cyclopent-1-ene-1-carboxylic Acid, a Highly Potent ?-Aminobutyric Acid Aminotransferase Inactivator for the Treatment of Addiction. J Am Chem Soc 140(6):2151ā€“2164. https://doi.org/10.1021/jacs.7b10965. Epub 2018 Jan 30. PubMed PMID: 29381352; PubMed Central PMCID: PMC5812813

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kadir M, Wang X, Zhu B, Liu J, Harland D, Popescu C (2017) The structure of the ā€œamorphousā€ matrix of keratins. J Struct Biol 198(2):116ā€“123. doi: 10.1016/j.jsb.2017.04.001. Epub 2017 Apr 5

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kantharaju RS, Aravinda S, Shamala N, Balaram P (2010) Helical conformations of hexapeptides containing N-terminus diproline segments. Biopolymers 94(3):360ā€“370. https://doi.org/10.1002/bip.21395

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kapinos LE, Burkhard P, Herrmann H, Aebi U, Strelkov SV (2011) Simultaneous formation of right- and left-handed anti-parallel coiled-coil interfaces by a coil2 fragment of human lamin A. J Mol Biol 408(1):135ā€“146. https://doi.org/10.1016/j.jmb.2011.02.037. Epub 2011 Feb 24. PubMed PMID: 21354179

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kasznel AJ, Zhang Y, Hai Y, Chenoweth DM (2017) Structural basis for aza-glycine stabilization of collagen. J Am Chem Soc 2017 Jul 19;139(28):9427ā€“9430. https://doi.org/10.1021/jacs.7b03398. Epub 2017 Jul 6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kendrew JC (1959) Structure and function in myoglobin and other proteins. Fed Proc 18(2, Part 1):740ā€“751. PubMed PMID: 136722

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Khanapur M, Alvala M, Prabhakar M, Shiva Kumar K, Edwin RK, Sri Saranya PS, Patel RK, Bulusu G, Misra P, Pal M (2017) Mycobacterium tuberculosis chorismate mutase: A potential target for TB. Bioorg Med Chem 25(6):1725ā€“1736. https://doi.org/10.1016/j.bmc.2017.02.001. Epub 2017 Feb 4. Review. PubMed PMID: 28202315

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kikuchi N, Fujiwara K, Ikeguchi M (2018) Ɵ-strand twisting/bending in soluble and transmembrane Ɵ-barrel structures. Proteins. https://doi.org/10.1002/prot.25576. [Epub ahead of print] PubMed PMID: 30019770

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kitaigorodsky AI (1973) Molecular crystals and molecules. Academic Press, New York

    Google ScholarĀ 

  • Kohn WD, Mant CT, Hodges RS (1977) Helical protein assembly motifs. J Biol Chem 272:2583ā€“2586

    ArticleĀ  Google ScholarĀ 

  • Kollman JM, Pandi L, Sawaya MR, Riley M, Doolittle RF (2009) Crystal structure of human fibrinogen. Biochemistry 48(18):3877ā€“3886. https://doi.org/10.1021/bi802205g

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Konno K, Rangel M, Oliveira JS, Dos Santos Cabrera MP, Fontana R, Hirata IY, Hide I, Nakata Y, Mori K, Kawano M, Fuchino H, Sekita S, Neto JR (2017) Decoralin, a novel linear cationic alpha-helical peptide from the venom of the solitary eumenine wasp Oreumenes decoratus. Peptides 28(12):2320ā€“2327. Epub 2007 Sep 29

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Krzywda S, Brzozowski AM, Higashitsuji H, Fujita J, Welchman R, Dawson S, Mayer RJ, Wilkinson AJ (2004) The Crystal Structure of Gankyrin, an Oncoprotein Found in Complexes with Cyclin-dependent Kinase 4, a 19 S Proteasomal ATPase Regulator, and the Tumor Suppressors Rb and p53. J Biol Chem 279:1541ā€“1545

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kuang Q, Purhonen P, ƅlander J, Svensson R, Hoogland V, Winerdal J, Spahiu L, Ottosson-Wadlund A, Jegerschƶld C, Morgenstern R, Hebert H (2017) Dead-end complex, lipid interactions and catalytic mechanism of microsomal glutathione transferase 1, an electron crystallography and mutagenesis investigation. Sci Rep 7(1):7897. https://doi.org/10.1038/s41598-017-07912-3. PubMed PMID: 28801553; PubMed Central PMCID: PMC5554250

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kurochkina N (2007) J Theor Biol 247:110ā€“121

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kurochkina N (2008) J Theor Biol 255:188ā€“198

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kurochkina N (2011) Common structural characteristics of fibrous and globular proteins. In: Haggerty LM (ed) Protein Structure. Nova Science Publishers, Inc, Hauppauge. https://www.springer.com/us/book/9783319200972

  • Kurochkina N, Choekyi T (2011) Helix-helix interfaces and ligand binding. J Theor Biol 283:92ā€“102

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ladner JE, Parsons JF, Rife CL, Gilliland GL, Armstrong RN (2004) Parallel evolutionary pathways for glutathione transferases: structure and mechanism of the mitochondrial class kappa enzyme rGSTK1-1. Biochemistry 43(2):352ā€“361. PubMed PMID: 14717589

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lance E, Arnich N, Maignien T, BirĆ© R (2018) Occurrence of Ī²-N-methylamino-l-alanine (BMAA) and Isomers in Aquatic Environments and Aquatic Food Sources for Humans. Toxins (Basel) 10(2):pii: E83. https://doi.org/10.3390/toxins10020083. Review.PubMed PMID: 29443939; PubMed Central PMCID: PMC5848184

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lasker MV, Gajjar MM, Nair SK (2005) Molecular Structure of the IL-1R-Associated Kinase-4 Death Domain and Its Implications for TLR signaling. J Immun 175:4175ā€“4179

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lee C-H, Kim M-S, Chung BM, Leahy DJ, Coulombe PA (2012) Structural basis for heteromeric assembly and perinuclear organization of keratin filaments. Nat Struct Mol Biol 19(7). https://doi.org/10.1038/nsmb.2330

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lee B, Richards FM (1971) The interpretation of protein structures: estimation of static accessibility. J Mol Biol 55:379ā€“400

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lee H, Song C, Hong YS, Kim MS, Cho HR, Kang T, Shin K, Choi SH, Hyeon T, Kim DH (2017) Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci Adv 3(3):e1601314. doi:10.1126/sciadv.1601314. eCollection 2017 Mar. PubMed PMID: 28345030; PubMed Central PMCID: PMC5342654

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Lee LK, Stewart AG, Donohoe M, Bernal RA, Stock D (2010) The structure of the peripheral stalk of Thermus thermophilus H+-ATPase/synthase. Nat Struct Mol Biol. 17(3):373ā€“378. https://doi.org/10.1038/nsmb.1761. Epub 2010 Feb 21. PubMed PMID: 20173764; PubMed Central PMCID: PMC2912985

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Leung K. (2010) (R)-3-[(18)F]Fluoro-2-methyl-2-N-(methylamino)propanoic acid. [updated 2010 Jul 29]. Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004-2013. Available from http://www.ncbi.nlm.nih.gov/books/NBK45198/ PubMed PMID: 20662134.

  • Li Y, Zhou M, Hu Q, Bai XC, Huang W, Scheres SH, Shi Y (2017) Mechanistic insights into caspase-9 activation by the structure of the apoptosome holoenzyme. Proc Natl Acad Sci U S A 114(7):1542ā€“1547. https://doi.org/10.1073/pnas.1620626114. Epub 2017 Jan 31. PubMed PMID: 28143931; PubMed Central PMCID: PMC5320974

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lin S-C, Lo Y-C, Wu H (2010) Helical assembly in the MyD88ā€“IRAK4ā€“IRAK2 complex in TLR/IL-1R signaling. Nature 465:885ā€“890

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Littler DR, Harrop SJ, Brown LJ et al (2008) Comparison of vertebrate and invertebrate CLIC proteins: the crystal structures of Caenorhabditis elegans EXC-4 and Drosophila melanogaster DmCLIC. Proteins 71:364ā€“378

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Liu J, Deng Y, Dey AK, Moore JP, Lu M (2009) Structure of the HIV-1 gp41membrane-proximal ectodomain region in a putative prefusion conformation. Biochemistry 48(13):2915ā€“2923. https://doi.org/10.1021/bi802303b. PubMed PMID: 19226163; PubMed Central PMCID: PMC2765501

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Liu J, Taylor DW, Krementsova EB, Trybus KM, Taylor KA (2006a) Three-dimensional structure of the myosin V inhibited state by cryoelectron tomography. Nature 442(7099):208ā€“211. Epub 2006 Apr 16.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Liu J, Deng Y, Zheng Q, Cheng CS, Kallenbach NR, Lu M (2006b) A parallel coiled-coil tetramer with offset helices. Biochemistry 45(51):15224ā€“15231. Epub 2006b Nov 29. PubMed PMID: 17176044

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lovejoy B, Choe S, Cascio D, McRorie DK, DeGrado WF, Eisenberg D (1993) Crystal structure of a synthetic triple-stranded alpha-helical bundle. Science 259:1288ā€“1293

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lovejoy B, Le TC, Luthy R, Cascio D, Oā€™Neil KT, DeGrado WF, Eisenberg D (1992) X-ray grade crystals of a designed a-helical coiled coil. Protein Sci 1:956ā€“957

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Malashkevich VN, Schneider BJ, McNally ML, Milhollen MA, Pang JX, Kim PS (1999) Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9-A resolution. Proc Natl Acad Sci U S A. 96(6):2662ā€“2667. PubMed PMID: 10077567; PubMed Central PMCID: PMC15825

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Martins DB, Vieira MR, Fadel V, Santana VAC, Guerra MER, Lima ML, Tempone AG, Dos Santos Cabrera MP (2017) Membrane targeting peptides toward antileishmanial activity: design, structural determination and mechanism of interaction. Biochim Biophys Acta pii: S0304-4165(17):30248ā€“30249. https://doi.org/10.1016/j.bbagen.2017.08.003. [Epub ahead of print]

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Masood R, Ullah K, Ali H, Ali I, Betzel C, Ullah A (2018) Spiderā€™s venom phospholipases D: A structural review. Int J Biol Macromol 107(Pt A):1054ā€“1065. https://doi.org/10.1016/j.ijbiomac.2017.09.081. Epub 2017 Sep 23. Review. PubMed PMID: 28951301

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Medved L, Nieuwenhuizen W (2003) Molecular mechanisms of initiation of fibrinolysis by fibrin. Thromb Haemost. 2003 Mar;89(3):409ā€“419.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Moitra J, Szilak L, Krylov D, Vinson C (1997) Leucine is the most stabilizing aliphatic amino acid in the d position of a dimeric leucine zipper coiled coil. Biochemistry 36:12567ā€“12573

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Moll JR, Ruvinov SB, Pastan I, Vinson C (2001) Designed heterodimerizing leucine zippers with a ranger of pIā€™s and stabilities up to 10ā€“15 M. Protein Sci 10:649ā€“655

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Mykhailiuk PK, Kubyshkin V, Bach T, Budisa N (2017) Peptidyl-prolyl model study: how does the electronic effect influence the amide bond Conformation? J Org Chem. https://doi.org/10.1021/acs.joc.7b00803. [Epub ahead of print]

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Namba K, Stubbs G (1986) Structure of tobacco mosaic virus at 3.6 Angstroms resolution. Implications for assembly. Science 231:1401ā€“1406

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Namba K, Pattanayek R, Stubbs G (1989) Visualization of protein-nucleic acid interactions in a virus. Structure of intact tobacco mosaic virus at 2.9 Angstrom resolution by X-ray fiber diffraction. J Mol Biol 208:307ā€“325

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Navarro E, Fenude E, Celda B (2002) Solution structure of a D, L-alternating oligonorleucine as a model of double-stranded antiparallel beta-helix. Biopolymers 64(4):198ā€“209

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Navarro E, Fenude E, Celda (2004) Conformational and structural analysis of the equilibrium between single- and double-strand beta-helix of a D,L-alternating oligonorleucine. Biopolymers 73(2):229ā€“241

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Navarro E, Tejero R, Fenude E, Celda B (2001) Solution NMR structure of a D,L-alternating oligonorleucine as a model of beta-helix. Biopolymers 59(2):110ā€“119

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Newberry RW, Raines RT (2017) 4-Fluoroprolines: conformational analysis and effects on the stability and folding of peptides and proteins. Top Heterocycl Chem 48:1ā€“25. https://doi.org/10.1007/7081_2015_196

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Oshaben KM, Horne WS (2014) Tuning assembly size in Peptide-based supramolecular polymers by modulation of subunit association affinity. Biomacromolecules 15(4):1436ā€“1442. https://doi.org/10.1021/bm5000423. Epub 2014 Mar 17

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Oā€™Shea EK, Klemm JD, Kim PS, Alber T (1991) Crystal structure of GCN4 leucine zipper, a two-stranded parallel coiled coil. Science 254:539

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Paliakasis CD, Kokkinidis M (1991) The stability of the four-Ī±-helix bundle motif in proteins. Protein Eng 4:849

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Park HH, Logette E, Raunser S, Cuenin S, Walz T, Tschopp J, Wu H (2007) Death domain assembly mechanism revealed by crystal structure of the oligomeric PIDDosome core complex. Cell 128:533ā€“546

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Parry DAD, Fraser RD, Squire JM (2008) Fifty years of coiled-coils and Ī±-helical bundles: a close relationship between sequence and structure. J Struct Biol 163:258ā€“269

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Passon DM, Lee M, Rackham O, Stanley WA, Sadowska A, Filipovska A, Fox AH, Bond CS (2012) Structure of the heterodimer of human NONO and paraspeckle protein component 1 and analysis of its role in subnuclear body formation. Proc Natl Acad Sci USA 109(13):4846ā€“4850. https://doi.org/10.1073/pnas.1120792109. Epub 2012 Mar 13. PubMed PMID: 22416126; PubMed Central PMCID: PMC3324020

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Pauling L, Corey RB, Branson HR (1951) The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci USA 37:205

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Pechik I, Madrazo J, Mosesson MW, Hernandez I, Gilliland GL, Medved L (2004) Crystal structure of the complex between thrombin and the central ā€œEā€ region of fibrin. Proc Natl Acad Sci USA 101(9):2718ā€“2723. https://doi.org/10.1073/pnas.0303440101

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Pielak RM, Schnell JR, Chou JJ (2009) Mechanism of drug inhibition and drug resistance of influenza A M2 channel. Proc Natl Acad Sci USA 106:7379ā€“7384

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Pitman KA, Borgland SL, MacLeod B, Puil E (2015) Isovaline does not activate GABA(B) receptor-coupled potassium currents in GABA(B) expressing AtT-20 cells and cultured rat hippocampal neurons. PLoS One 10(2):e0118497. https://doi.org/10.1371/journal.pone.0118497. eCollection 2015. PubMed PMID: 25706125; PubMed Central PMCID: PMC4337901

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Plecs JJ, Harbury PB, Kim PS, Alber T (2004) Structural test of the parameterized-backbone method for protein design. J Mol Biol 342(1):289ā€“297. PubMed PMID: 15313624.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ponder JW, Richards FM (1987) Tertiary templates for proteins. J Mol Biol 193:775

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Raghavender US, Kantharaju Aravinda S, Shamala N, Balaram P (2010) Hydrophobic peptide channels and encapsulated water wires. J Am Chem Soc 132(3):1075ā€“1086. https://doi.org/10.1021/ja9083978

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95ā€“99

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Reinert ZE, Lengyel GA, Horne WS (2013) Protein-like tertiary folding behavior from heterogeneous backbones.J Am Chem Soc 135(34):12528ā€“12531. https://doi.org/10.1021/ja405422v. Epub 2013 Aug 15

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Richards FM (1977) Areas, volumes, packing, and protein structure. Ann Rev Biophys Bioeng 6:151ā€“176

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ruba A, Yang W (2016) O-GlcNAc-ylation in the nuclear pore complex. Cell Mol Bioeng 9(2):227ā€“233. https://doi.org/10.1007/s12195-016-0440-0. Epub 2016 Apr 26. PubMed PMID: 28638491; PubMed Central PMCID: PMC5475274

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rubinson EH, Gowda AS, Spratt TE, Gold B, Eichman BF (2010) An unprecedented nucleic acid capture mechanism for excision of DNA damage. Nature 468:406ā€“411

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Le Rumeur E, Hubert JF, Winder SJ (2012) A new twist to coiled coil. FEBS Lett 586(17):2717ā€“2722. https://doi.org/10.1016/j.febslet.2012.05.004. Epub 2012 May 11. Review. PubMed PMID: 22584055

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sakai H (2017) Overview of potential clinical applications of Hemoglobin Vesicles (HbV) as artificial red cells, evidenced by preclinical studies of the academic research consortium. J Funct Biomater 8(1):10. https://doi.org/10.3390/jfb8010010

    ArticleĀ  CASĀ  PubMed CentralĀ  Google ScholarĀ 

  • Salnikov ES, Anantharamaiah GM, Bechinger B (2018) Supramolecular organization of apolipoprotein-A-I-derived peptides within disc-like arrangements. Biophys J 115(3):467ā€“477. https://doi.org/10.1016/j.bpj.2018.06.026. Epub 2018 Jul 11. PubMed PMID: 30054032; PubMed Central PMCID: PMC6085177

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Samatey FA, Imada K, Nagashima S, Vonderviszt F, Kumasaka T, Yamamoto M, Namba K (2001) Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410:331ā€“337

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Schrauber H, Eisenhaber F, Argos P (1993) Rotamers: to be or not to be? An analysis of amino acid side-chain conformations in globular proteins. J Mol Biol 230(2):592ā€“612

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Scott FL, Stec B, Pop C, Dobaczewska MK, Lee JJ, Monosov E, Robinson H, Salvesen GS, Schwarzenbacher R, Riedl SJ (2009) The Fas/FADD death domain complex structure unravels signaling by receptor clustering. Nature 457:1019ā€“1022

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Shao C, Zhang F, Kemp MM, Linhardt RJ, Waisman DM, Head JF, Seaton BA (2006) Crystallographic analysis of calcium-dependent heparin binding to Annexin A2. J Biol Chem 281:31689ā€“31695

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sharma K, Dhillon A, Goyal A (2018) Insights into structure and reaction mechanism of Ī²-mannanases. Curr Protein Pept Sci 19(1):34ā€“47. https://doi.org/10.2174/1389203717666161013115724. Review. PubMed PMID: 27739373

  • Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1ā€“16

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Sheriff S, Hendrickson WA, Smith JL (1987) Structure of myohemerythrin in the azidomet state at 1.7/1.3 angstroms resolution. J Mol Biol 197:273ā€“296

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929ā€“958. https://doi.org/10.1146/annurev.biochem.77.032207.120833

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Smith AI, Lew RA, Shrimpton CN, Evans RG, Abbenante G (2000) A novel stable inhibitor of endopeptidases EC 3.4.24.15 and 3.4.24.16 potentiates bradykinin-induced hypotension. Hypertension 35(2):626ā€“630. PubMed PMID: 10679508

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Song X, Zhang Y, Wang Y (2011) Antimicrobial peptides peptaibols from trichodermaā€”a review. Wei Sheng Wu Xue Bao 51(4):438ā€“444. Review. Chinese. PubMed PMID: 21796977

    Google ScholarĀ 

  • Spyroulias GA, Papazacharias S, Pairas G, Cordopatis P (2002) Monitoring the structural consequences of Phe12ā€”>D-Phe and Leu15ā€”>Aib substitution in human/rat corticotropin releasing hormone. Implications for design of CRH antagonists. Eur J Biochem 269(24):6009ā€“6019. PubMed PMID: 12473096

    Google ScholarĀ 

  • Squire JM, Paul DM, Morris EP (2017) Myosin and actin filaments in muscle: structures and interactions. Subcell Biochem 82:319ā€“371. https://doi.org/10.1007/978-3-319-49674-0_11

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Stanfield R, Cabezas E, Satterthwait A, Stura E, Profy A, Wilson I (1999) Dual conformations for the HIV-1 gp120 V3 loop in complexes with different neutralizing fabs. Structure 7(2):131ā€“142. PubMed PMID: 10368281

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Stetefeld J, Jenny M, Schulthess T, Landwehr R, Engel J, Kammerer RA (2000) Crystal structure of a naturally occurring parallel right-handed coiled coil tetramer. Nat Str Biol 7:772ā€“776

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Stevens J, Corper AL, Basler CF, Taubenberger JK, Palese P, Wilson IA (2004) Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. Science 303:1866ā€“1870

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Strelkov SV, Herrmann H, Geisler N, Wedig T, Zimbelmann R, Aebi U, Burkhard P (2002) Conserved segments 1A and 2B of the intermediate filament dimer: their atomic structures and role in filament assembly. EMBO J 21(6):1255ā€“1266. PubMed PMID: 11889032; PubMed Central PMCID: PMC125921

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Subbalakshmi C, Basak P, Nagaraj R (2017) Self-assembly of t-Butyloxycarbonyl protected dipeptide methyl esters composed of leucine, isoleucine and valine into highly organized structures from alcohol and aqueous alcohol mixtures. Biopolymers https://doi.org/10.1002/bip.23033. [Epub ahead of print]

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sudha G, Singh P, Swapna LS, Srinivasan N (2015) Weak conservation of structural features in the interfaces of homologous transient proteinā€“protein complexes. Protein Sci A Publ Protein Soc 24(11):1856ā€“1873. https://doi.org/10.1002/pro.2792

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sutton RB, Fasshauer F, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 ƅ resolution. Nature 395:347ā€“353

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Taylor KC, Buvoli M, Korkmaz EN, Buvoli A, Zheng Y, Heinze NT, Cui Q, Leinwand LA, Rayment I (2015) Skip residues modulate the structural properties of the myosin rod and guide thick filament assembly. Proc Natl Acad Sci USA 112(29):E3806ā€“E3815. https://doi.org/10.1073/pnas.1505813112. Epub 2015 Jul 6. PubMed PMID: 26150528; PubMed Central PMCID: PMC4517226

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Touw DS, Nordman CE, Stuckey JA, Pecorano VL (2007) Identifying important structural characteristics of arsenic resistance proteins by using designed three-stranded coiled-coils. Proc Natl Acad Sci 104:11969ā€“11974

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Tseng T-S, Wang S-H, Chang T-W, Wei H-M, Wang Y-J, Tsai K-C et al (2016) Sarkosyl-induced helical structure of an antimicrobial peptide GW-Q6 plays an essential role in the binding of surface receptor OprI in Pseudomonas aeruginosa. PLoS ONE 11(10):e0164597. https://doi.org/10.1371/journal.pone.0164597

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Vasudev PG, Ananda K, Chatterjee S, Aravinda S, Shamala N, Balaram P (2007) Hybrid peptide design. Hydrogen bonded conformations in peptides containing the stereochemically constrained gamma-amino acid residue, gabapentin. J Am Chem Soc 129(13):4039ā€“4048. Epub 2007 Mar 10

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Vasudev PG, Chatterjee S, Shamala N, Balaram P (2009) Gabapentin: a stereochemically constrained gamma amino acid residue in hybrid peptide design. Acc Chem Res 42(10):1628ā€“1639. https://doi.org/10.1021/ar9001153. Review. PubMed PMID: 19572698

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Venanzi M, Gatto E, Formaggio F, Toniolo C (2017) The importance of being Aib. Aggregation and self-assembly studies on conformationally constrained oligopeptides. J Pept Sci 23(2):104-116. https://doi.org/10.1002/psc.2956. Epub 2017 Jan 5. Review. PubMed PMID: 28054413

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Very N, Vercoutter-Edouart AS, Lefebvre T, HardivillĆ© S, El Yazidi-Belkoura I (2018 Oct 9) Cross-Dysregulation of O-GlcNAcylation and PI3K/AKT/mTOR Axis in Human Chronic Diseases. Front Endocrinol (Lausanne). 9:602. doi: 10.3389/fendo.2018.00602. eCollection 2018. Review. PubMed PMID: 30356686; PubMed Central PMCID: PMC6189293

    Google ScholarĀ 

  • Vitagliano L, Berisio R, Mazzarella L, Zagari A (2001) Structural bases of collagen stabilization induced by proline hydroxylation. Biopolymers 58(5):459ā€“464

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Vollmar M, Schlieper D, Winn M, BĆ¼chner C, Groth G (2009) Structure of the c14 rotor ring of the proton translocating chloroplast ATP synthase. J Biol Chem 284(27):18228ā€“18235. https://doi.org/10.1074/jbc.M109.006916. Epub 2009 May 7. PubMed PMID: 19423706; PubMed Central PMCID: PMC2709358

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yadav MK, Redman JE, Leman LJ, Alvarez-GutiĆ©rrez JM, Zhang Y, Stout CD, Ghadiri MR (2005) Structure-based engineering of internal cavities in coiled-coil peptides. Biochemistry 44(28):9723ā€“9732. PubMed PMID: 16008357; PubMed Central PMCID: PMC1779508

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yang J, Ma YQ, Page RC, Misra S, Plow EF, Qin J (2009) Structure of an integrin alphaIIb beta3 transmembrane-cytoplasmic heterocomplex provides insight into integrin activation. Proc Natl Acad Sci USA 106(42):17729ā€“17734. https://doi.org/10.1073/pnas.0909589106. Epub 2009 Oct 1. PubMed PMID: 19805198; PubMed Central PMCID: PMC2764936

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Young SC (2018) A systematic review of antiamyloidogenic and metal-chelating peptoids: two structural motifs for the treatment of Alzheimerā€™s disease. Molecules 23(2). pii: E296. https://doi.org/10.3390/molecules23020296. Review. PubMed PMID: 29385058

    ArticleĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Wada SI, Takesada A, Nagamura Y, Sogabe E, Ohki R, Hayashi J, Urata H (2017) Structure-activity relationship study of Aib-containing amphipathic helical peptide-cyclic RGD conjugates as carriers for siRNA delivery. Bioorg Med Chem Lett;27(24):5378ā€“5381. https://doi.org/10.1016/j.bmcl.2017.11.018. Epub 2017 Nov 10. PubMed PMID: 29157863

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wagschal K, Lavigna P, Mant C, Hodges RS (1999) The role of position a in determining the stability and oligomerization state of a-helical coiled coils: 20 amino acid stability coefficients in the hydrophobic core of proteins. Protein Sci 8:2312ā€“2329

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Weber CH, Vincenz C (2001) The death domain superfamily: a tale of two interfaces? TIBS 26:475ā€“481

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Wells WW, Yang Y, Deits TL, Gan ZR (1993) Thioltransferases. Adv Enzymol Relat Areas Mol Biol;66:149ā€“201. Review. PubMed PMID: 8430514

  • Woolfson DN (2010) Building fibrous biomaterials from -helical and collagen-like coiled-coil peptides. Biopolymers 94:118ā€“127

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Xie L, Yang S (2016) Brain globins in physiology and pathology. Med Gas Res 6(3):154ā€“163. https://doi.org/10.4103/2045-9912.191361

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Yeo HJ, Yokoyama T, Walkiewicz K, Kim Y, Grass S, Geme JW (2007) The structure of the Haemophilus influenzae HMW1 pro-piece reveals a structural domain essential for bacterial two-partner secretion. J Biol Chem 282(42):31076ā€“31084. Epub 2007 Aug 14. PubMed PMID: 17699157

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yin Z, Shi K, Banerjee S, Pandey KK, Bera S, Grandgenett DP, Aihara H (2016) Crystal structure of the Rous sarcoma virus intasome. Nature 530(7590):362ā€“366. https://doi.org/10.1038/nature16950. PubMed PMID: 26887497; PubMed Central PMCID: PMC4881392

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Zhang Y (2017) Energetics, kinetics, and pathway of SNARE folding and assembly revealed by optical tweezers. Protein Sci;26(7):1252ā€“1265. https://doi.org/10.1002/pro.3116. Epub 2017 Mar 8. Review. PubMed PMID: 28097727; PubMed Central PMCID: PMC5477538.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Zhao H, Qin X, Yang D, Jiang Y, Zheng W, Wang D, Tian Y, Liu Q, Xu N, Li Z (2017) The development of activatable lytic peptides for targeting triple negative breast cancer. Cell Death Discov 3:17037. https://doi.org/10.1038/cddiscovery.2017.37. eCollection 2017. PubMed PMID: 29263848; PubMed Central PMCID: PMC5629628

  • Zhou GP (2011) The structural determinations of the leucine zipper coiled-coil domains of the cGMP-dependent protein kinase I alpha and its interaction with the myosin binding subunit of the myosin light chains phosphase. Proteins Pept Lett 18:966ā€“978

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kurochkina, N. (2019). Proteins and Protein Structure. In: Protein Structure and Modeling. Springer, Singapore. https://doi.org/10.1007/978-981-13-6601-7_1

Download citation

Publish with us

Policies and ethics