Skip to main content

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 312 Accesses

Abstract

With the increasing development of IoT, a massive number of IoT devices are desired to access various wireless networks, so as to provide a variety of advanced applications in industry, agriculture, medicine, and environment. In order to satisfy differential performance requirements of the IoT applications with limited wireless resources, one key point is the design of efficient multiple access schemes. In this chapter, we first discuss the advantages of cellular IoT over the other IoT networks and the development trend of cellular IoT in 5G and beyond. Then, we give an overview of massive access techniques of the cellular IoT, which will be frequently applied and redesigned for different scenarios of the cellular IoT in the sequent chapters. Finally, we introduce the objective and content of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Survs. Tuts 17(4), 2347–2376 (2015)

    Article  Google Scholar 

  2. M.R. Palattella, M. Dohler, A. Grieco, G. Rizzo, J. Torsner, T. Engel, L. Ladid, Internet of things in the 5G era: enablers, architecture, and business models. IEEE J. Sel. Areas Commun. 34(3), 510–527 (2016)

    Article  Google Scholar 

  3. L.D. Xu, W. He, S. Li, Internet of things in industries: a survey. IEEE Trans. Ind. Inform. 10(4), 2233–2243 (2014)

    Article  Google Scholar 

  4. A. Zanella, N. Bui, A. Castellani, L. Vangelista, M. Zorzi, Internet of things for smart cities. IEEE Int. Things J. 1(1), 22–32 (2014)

    Article  Google Scholar 

  5. H. Zhang, J. Li, B. Wen, Y. Xun, J. Liu, Connecting intelligent things in smart hospitals using NB-IoT. IEEE Internet Things J. 5(3), 1550–1560 (2018)

    Article  Google Scholar 

  6. Y. Li, X. Cheng, Y. Cao, D. Wang, L. Yang, Smart choice for the smart grid: narrowband internet of things (NB-IoT). IEEE Internet Things J. 5(3), 1505–1515 (2018)

    Article  Google Scholar 

  7. J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, W. Zhao, A survey on Internet of things: architecture, enabling technologies, security and privacy, and application. IEEE Internet Things J. 4(5), 1125–1142 (2017)

    Article  Google Scholar 

  8. S. Cirani, L. Davoli, G. Ferrari, R. Léone, P. Medagliani, M. Picone, L. Veltri, A scalable and self-configuring architecture for service discovery in the internet of things. IEEE Internet Things J. 1(5), 508–521 (2014)

    Article  Google Scholar 

  9. M.R. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L.A. Grieco, G. Boggia, M. Dohler, Standardized protocol stack for the internet of (important) things. IEEE Commun. Survs. Tuts. 15(3), 1389–1406 (2013)

    Article  Google Scholar 

  10. A. Rajandekar, B. Sikdar, A survey of MAC layer issues and protocols for machine-to-machine communications. IEEE Internet Things J. 2(2), 175–186 (2015)

    Article  Google Scholar 

  11. X. Chen, H.-H. Chen, W. Meng, Cooperative communications for cognitive radio networks-from theory to applications. IEEE Commun. Survs. Tuts. 16(3), 1180–1193 (2014)

    Article  Google Scholar 

  12. L. Davoli, L. Belli, A. Cilfone, G. Ferrari, From micro to macro IoT: challenges and solutions in the integration of IEEE 802.15.4/802.11 and sub-GHz technologies. IEEE Internet Things J. 5(2), 784–793 (2018)

    Article  Google Scholar 

  13. A. Harris III, V. Khanna, G. Tuncay, R. Want, R. Kravets, Bluetooth low energy in dense IoT environments. IEEE Commun. Mag. 54(12), 30–36 (2016)

    Article  Google Scholar 

  14. P.K. Sharma, Y.-S. Jeong, J.H. Park, EH-HL: effective communication model by integrated EH-WSN and Hybrid LiFi/WiFi for IoT. IEEE Internet Things J. 5(3), 1719–1726 (2018)

    Article  Google Scholar 

  15. A.I. Sulyman, S.M.A. Oteafy, H.S. Hassanein, Expanding the cellular-IoT umbrella: an architectural approach. IEEE Wirel. Commun. 24(3), 66–71 (2017)

    Article  Google Scholar 

  16. V.W.S. Wong, R. Schober, D.W.K. Ng, L.-C. Wang, Key Technologies for 5G Wireless Systems (Cambridge University Press, Cambridge, 2017)

    Book  Google Scholar 

  17. X. Chen, Z. Zhang, H.-H. Chen, On distributed antenna system with limited feedback precoding-opportunities and challenges. IEEE Wirel. Commun. 17(2), 80–88 (2010)

    Article  Google Scholar 

  18. J.G. Andrews, S. Buzzi, W. Choi, S.V. Hanly, A. Lozano, A.C.K. Soong, J.C. Zhang, What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)

    Article  Google Scholar 

  19. C.-X. Wang, F. Haider, X. Gao, X.-H. You, Y. Yang, D. Yuan, H.M. Aggoune, H. Haas, S. Fletcher, E. Hepsaydir, Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 52(2), 122–130 (2014)

    Article  Google Scholar 

  20. 3GPP TR 45.820, Technical specification group GSM/EDGE radio access network; cellular system support for ultra-low complexity and low throughput internet of things (CIoT), Nov 2015

    Google Scholar 

  21. M. Agiwal, A. Roy, N. Saxena, Next generation 5G wireless networks: a comprehensive survey. IEEE Commun. Survs. Tuts 18(3), 1617–1655 (2016)

    Article  Google Scholar 

  22. L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-lin, Z. Wang, Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag. 53(9), 74–81 (2015)

    Article  Google Scholar 

  23. C. Zhong, X. Hu, X. Chen, D.W.K. Ng, Z. Zhang, Spatial modulation assisted multi-antenna non-orthogonal multiple access. IEEE Wirel. Commun. 25(2), 61–67 (2018)

    Article  Google Scholar 

  24. Z. Ding, Z. Yang, P. Fan, H.V. Poor, On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Process. Lett. 21(12), 1501–1505 (2014)

    Article  Google Scholar 

  25. M. Shirvanimoghaddam, M. Dohler, S.J. Johnson, Massive non-orthogonal multiple access for cellular IoT: potentials and limitations. IEEE Commun. Mag. 55(9), 55–61 (2017)

    Article  Google Scholar 

  26. M. Shirvanimogaddam, M. Condoluci, M. Dohler, S.J. Johnson, On the fundamental limits of random non-orthogonal multiple access in cellular massive IoT. IEEE J. Sel. Areas Commun. 35(10), 2238–2252 (2017)

    Article  Google Scholar 

  27. C. Zhong, X. Hu, X. Chen, D.W.K. Ng, Z. Zhang, Spatial modulation assisted multi-antenna non-orthogonal multiple access. IEEE Wirel. Commun. 25(2), 61–67 (2018)

    Article  Google Scholar 

  28. X. Chen, R. Jia, D.W.K. Ng, On the design of massive non-orthogonal multiple access with imperfect successive interference cancellation. IEEE Trans. Commun. (99), 1–1 (2018)

    Google Scholar 

  29. X. Chen, Z. Zhang, C. Zhong, D.W.K. Ng, Exploiting multiple-antenna for non-orthogonal multiple access. IEEE J. Sel. Areas Commun. 35(10), 2207–2220 (2017)

    Article  Google Scholar 

  30. X. Chen, Z. Zhang, C. Zhong, R. Jia, D.W.K. Ng, Fully non-orthogonal communication for massive access. IEEE Trans. Commun. 66(4), 1717–1731 (2018)

    Article  Google Scholar 

  31. J. Choi, On the power allocation for MIMO-NOMA systems with layered transmission. IEEE Trans. Wirel. Commun. 15(5), 3226–3237 (2016)

    Article  Google Scholar 

  32. Z. Ding, F. Adachi, H.V. Poor, The application of MIMO to non-orthogonal multiple access. IEEE Trans. Wirel. Commun. 15(1), 537–552 (2016)

    Article  Google Scholar 

  33. L. Xu, R. Collier, G.M.P. O’Hare, A survey of clustering techniques in WSNs and consideration of the challenges of applying such to 5G IoT scenarios. IEEE Internet Things J. 4(5), 1229–1249 (2017)

    Article  Google Scholar 

  34. Y. Liu, M. Elkashlan, Z. Ding, G.K. Karagiannidis, Fairness of user clustering in MIMO non-orthogonal multiple access systems. IEEE Commun. Lett. 20(7), 1464–1468 (2016)

    Google Scholar 

  35. X. Chen, Z. Zhang, C. Zhong, R. Jia, On the design of massive access, in Proceedings of IEEE WCSP, Nanjing, China (2017), pp. 1–6

    Google Scholar 

  36. Z. Ding, R. Schober, H.V. Poor, A general MIMO framework for NOMA downlink and uplink transmission based on signal alignment. IEEE Trans. Wirel. Commun. 15(6), 4438–4454 (2016)

    Article  Google Scholar 

  37. X. Chen, R. Jia, D.W.K. Ng, The application of relay to massive non-orthogonal multiple access. IEEE Trans. Commun. 66(11), 5168–5180 (2018)

    Article  Google Scholar 

  38. C.-L. Wang, J.-Y. Chen, Y.-J. Chen, Power allocation for downlink non-orthogonal multiple access system. IEEE Wirel. Commun. Lett. 5(5), 532–535 (2016)

    Article  Google Scholar 

  39. Z. Yang, Z. Ding, P. Fan, N. Al-Dhahir, A general power allocation scheme to guarantee quality of service in downlink and uplink NOMA systems. IEEE Trans. Wirel. Commun. 15(11), 7244–7257 (2016)

    Article  Google Scholar 

  40. Z. Ding, H.V. Poor, Design of massive-MIMO-NOMA with limited feedback. IEEE Signal Process. Lett. 23(5), 629–633 (2016)

    Article  Google Scholar 

  41. J. Ma, C. Liang, C. Xu, P. Li, On orthogonal and superimposed pilot schemes in massive MIMO NOMA systems. IEEE J. Sel. Areas Commun. 35(12), 2696–2707 (2017)

    Article  Google Scholar 

  42. P. Li, R.C. de Lamare, R. Fa, Multiple feedback successive interference cancellation detection for multiuser MIMO systems. IEEE Trans. Wirel. Commun. 10(8), 2434–2439 (2011)

    Article  Google Scholar 

  43. S.M.R. Islam, N. Avazov, O.A. Dobre, K.-S. Kwak, Power-domain non-orthogonal multiple access (NOMA) in 5G: potentials and challenges. IEEE Commun. Survs. Tuts 19(2), 721–742 (2017)

    Article  Google Scholar 

  44. J. Xu, J. Yao, L. Wang, Z. Ming, K. Wu, L. Chen, Narrowband internet of things: evolutions, technologies, and open issues. IEEE Internet Things J. 5(3), 1449–1462 (2018)

    Article  Google Scholar 

  45. X. Chen, Z. Zhang, C. Zhong, D.W.K. Ng, R. Jia, Exploiting inter-user interference for secure massive non-orthogonal multiple access. IEEE J. Sel. Areas Commun. 36(4), 788–801 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, X. (2019). Introduction. In: Massive Access for Cellular Internet of Things Theory and Technique. SpringerBriefs in Electrical and Computer Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-6597-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6597-3_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6596-6

  • Online ISBN: 978-981-13-6597-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics