Skip to main content

Derivative Nonlinear Schrödinger Equations for Single Transmission Lines

  • Chapter
  • First Online:
Schrödinger Equations in Nonlinear Systems
  • 990 Accesses

Abstract

In the present chapter, we study the generation of nonlinear modulated waves in one-dimensional real electrical lattices. In the continuum limit, we use the semi-discrete approximation to show that the dynamics of modulated waves through the networks under considerations are governed by derivative equations of Schrödinger type including the generalized Chen–Lee–Liu equation and the cubic–quintic derivative NLS equations. Through the analytical exact solutions of the derived network equations, we investigate the transmission of modulated pulses through the networks. The effects of linear dispersive element on the voltage signals are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdourahman., Kengne E.: Generation of nonlinear modulated waves in a modified Noguchi electrical transmission network. Chaos, Solitons Fractals 92, 1–8 (2016)

    Google Scholar 

  2. Benjamin, T.B., Feir, J.E.: The disintegration of wave trains on deep water. Part 1. Theory. J. Fluid Mech. 27, 417 (1967)

    Google Scholar 

  3. Bronski, J.C., Carr, L.D., Deconinck, B., Kutz, J.N.: Stability of attractive Bose-Einstein condensates in a periodic potential. Phys. Rev. Lett. 86, 1401 (2001)

    Google Scholar 

  4. Bronski, J.C., Carr, L.D., Deconinck, B., Kutz, J.N., Promislow, K.: Stability of repulsive Bose-Einstein condensates in a periodic potential. Phys. Rev. E 63, 036612 (2001)

    Google Scholar 

  5. Courant, R., Hilbert, D.: Method of mathematical physics. Wiley, New York (1989)

    Google Scholar 

  6. El, G.A., Grimshaw, R.H.J.: Generation of undular bores in the shelves of slowly-varying solitary waves. Chaos 12, 1015 (2002)

    Google Scholar 

  7. Hirota, R.: Solitary signals in electrical nonlinear transmission line. J. Math. Phys. 14, 805 (1978)

    Google Scholar 

  8. Hoefer, M.A., Ablowitz, M.J.: Interactions of dispersive shock waves. Phys. D 44 (2007)

    Google Scholar 

  9. Kamchatnov, A.M.: Nonlinear periodic waves and their modulations - an introductory course. World Scientific, Singapore (2000)

    Google Scholar 

  10. Kakutani, T., Michihiro, K.: Marginal state of modulational instability -note on Benjamin-Feir instability. J. Phys. Soc. Jpn. 52, 4129 (1983)

    Google Scholar 

  11. Kaup, D.J., Newell, A.C.: An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 19, 798 (1978)

    Google Scholar 

  12. Kengne, E., Lakhssassi, A.: Dynamics of modulated waves in a lossy modified Noguchi electrical transmission line. Phys. Rev. E 91, 032907 (2015)

    Google Scholar 

  13. Kengne, E., Lakhssassi, A., Nguyen-Ba, T., Vaillancourt, R.: Dispersive shock waves propagating in the cubic-quintic derivative nonlinear Schrödinger equation. Can. J. Phys. 88, 55–66 (2010)

    Google Scholar 

  14. Kengne, E., Liu, W.M.: Exact solutions of the derivative nonlinear Schrödinger equation for a nonlinear transmission line. Phys. Rev. E 73, 026603 (2006)

    Google Scholar 

  15. Kumar, V.R., Radha, R., Wadati, M.: Phase engineering and Solitons of Bose-Einstein condensates with two- and three-body interactions. J. Phys. Soc. Jpn. 79, 074005 (2010)

    Google Scholar 

  16. Lai, D.W.C., Chow, K.W.: Coalescence of ripplons, breathers, dromions and dark solitons. J. Phys. Soc. Jpn. 70, 666 (2001)

    Google Scholar 

  17. Marklund, M., Shukla, P.K.: Modulational instability of partially coherent signals in electrical transmission lines. Phys. Rev. E 73, 057601 (2006)

    Google Scholar 

  18. Marquié, P., Bilbault, J.M., Remoissenet, M.: Generation of envelope and hole solitons in an experimental transmission line. Phys. Rev. E 49, 828 (1994)

    Google Scholar 

  19. Nozaki, K., Bekki, N.: Pattern selection and spatiotemporal transition to Chaos in the Ginzburg-Landau equation. Phys. Rev. Lett. 51, 2171 (1983)

    Google Scholar 

  20. Schürmann, H.W.: Traveling wave solutions of the cubic-quintic nonlinear Schrödinger equation. Phys. Rev. E 54, 4312 (1996)

    Google Scholar 

  21. Taniuti, T., Wei, C.C.: Reductive perturbation method in nonlinear wave propagation II. Application to hydromagnetic waves in cold plasma. J. Phys. Soc. Jpn. 24, 941 (1968)

    Google Scholar 

  22. Taniuti, T., Yajima, N.: Perturbation method for a nonlinear wave modulation I. J. Math. Phys. 10, 1369 (1969)

    Google Scholar 

  23. Washimi, H., Taniuti, T.: Propagation of ion-acoustic solitary waves of small amplitude. Phys. Rev. Lett. 17, 966 (1966)

    Google Scholar 

  24. Whitham, G.B.: Linear and Nonlinear Waves. Wiley-Interscience, New York (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu-Ming Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, WM., Kengne, E. (2019). Derivative Nonlinear Schrödinger Equations for Single Transmission Lines. In: Schrödinger Equations in Nonlinear Systems. Springer, Singapore. https://doi.org/10.1007/978-981-13-6581-2_4

Download citation

Publish with us

Policies and ethics