Skip to main content

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 137))

  • 136 Accesses

Abstract

The demand forecast model and the utility function , derived in Chap. 2, are used to assess the exact need for emergency resources at different shelters. As mentioned earlier, these assessed needs are required to be transmitted and accumulated at the control station for maintaining a fully functional relief chain .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basu S, Roy S, DasBit S, Bandyopadhyay S (2016) A human mobility based knowledge sharing approach for post disaster need assessment using DTN. In: Proceedings of ACM ICDCN, Article 34

    Google Scholar 

  2. Mukherjee A, Basu S, Roy S, Bandyopadhyay S (2015) Developing a coherent global view for post disaster situation awareness using opportunistic network. Proceedings of IEEE COMSNETS 2015:1–7

    Google Scholar 

  3. Fall K et al (2010) A disruption-tolerant architecture for secure and efficient disaster response communications. In: Proceedings of ISCRAM

    Google Scholar 

  4. Paul PS et al (2015) Challenges in designing testbed for evaluating delay-tolerant hybrid networks. In: Proceedings of PerCom workshops, pp 280–283

    Google Scholar 

  5. Hossmann T et al (2011) Twitter in disaster mode: security architecture. In: Proceedings of SWID, Article No. 7

    Google Scholar 

  6. Mehendale H, Paranjpe A, Vempala S (2011) LifeNet: a flexible Ad hoc networking solution for transient environments. SIGCOMM Comput Commun Rev 41(4):446–447

    Article  Google Scholar 

  7. Ntareme H, Zennaro M, Pehrson B (2011) Delay tolerant network on smartphones: applications for communication challenged areas. In: Proceedings of ExtremeCom, Article No. 14

    Google Scholar 

  8. Wang S et al (2013) Opportunistic Routing in Intermittently Connected Mobile P2P Networks. IEEE J Sel Areas Commun 31(9):369–378

    Article  Google Scholar 

  9. Wang S, Liu M, Cheng X, Song M (2012) Routing in pocket switched networks. IEEE Wirel Commun 19(2)

    Google Scholar 

  10. Henderson T, Kotz, Abyzov I, Yeo J (2005) CRAWDAD Trace Set Dartmouth/campus/movement (v. 2005-03-08). Available via. https://crawdad.org/dartmouth/campus/20090909/. Accessed Jan 2015

  11. Gonzalez MC, Hidalgo CA, Barabasi AL (2008) Understanding individual human mobility patterns. Nature 453(7196):779–782

    Article  Google Scholar 

  12. Song C, Qu Z, Blumm N, Barabasi A (2010) Limits of predictability in human mobility. Science 327(968):1018

    Article  MathSciNet  Google Scholar 

  13. Uddin MYS, Nicol DM, Abdelzaher TF, Kravets RH (2009) A post-disaster mobility model for delay tolerant networking. In: Proceedings of winter simulation conference, pp 2785–2796

    Google Scholar 

  14. Nelson SC, Harris AF, Kravets R (2007) Event-driven, Role-based mobility in disaster recovery networks. In Proceedings of CHANTS 2007, pp 27–34

    Google Scholar 

  15. Aschenbruck N, Gerhards-Padilla E, Martini P (2009) Modeling Mobility in Disaster Area Scenarios. Perform Eval J 66(12):773–790

    Article  Google Scholar 

  16. Aschenbruck N, Gerhards-Padilla E, Martini P (2008) A survey on mobility models for performance analysis in tactical mobile networks. J Telecommun Inf Technol 2(2008):54–61

    Google Scholar 

  17. Bai F, Helmy A (2004) A survey of mobility models. Wirel Adhoc Netw 206:1–30

    Google Scholar 

  18. Keränen A, Ott J, Kärkkäinen T (2009) The ONE simulator for DTN protocol evaluation. In: Proceedings of SIMUTOOLS, Article No. 55

    Google Scholar 

  19. Vahdat A, Becker D (2000) Epidemic routing for partially-connected Ad Hoc networks. Master’s Thesis, Duke University, Durham, NC, USA

    Google Scholar 

  20. Lindgren A, Doria A, Schelén O (2003) Probabilistic routing in intermittently connected networks. SIGMOBILE Mob Comput Commun Rev 7(3):19–20

    Article  Google Scholar 

  21. Spyropoulos T, Psounis K, Raghavendra CS (2005) Spray and wait: an efficient routing scheme for intermittently connected mobile networks. In: Proceedings of SIGCOMM workshop on delay-tolerant networking, pp 252–259

    Google Scholar 

  22. Burgess J, Gallagher B, Jensen D, Levine BN (2006) MaxProp: Routing for vehicle-based disruption-tolerant networks. In: Proceedings of INFOCOM, pp 1–11

    Google Scholar 

  23. Balasubramanian A, Levine B, Venkataramani A (2007) DTN routing as a resource allocation problem. SIGCOMM Comput Commun Rev 37(4):373–384

    Article  Google Scholar 

  24. Daly EM, Haahr M (2007) Social network analysis for routing in disconnected delay-tolerant MANETs. In: Proceedings of MobiHoc, pp 32–40

    Google Scholar 

  25. Hui P, Crowcroft J, Yoneki E (2008) BUBBLE Rap: social-based forwarding in delay tolerant networks. In: Proceedings of MobiHoc, pp 241–250

    Google Scholar 

  26. Nelson SC, Bakht M, Kravets R (2009) Encounter-based routing in DTNs. In: Proceedings of INFOCOM, pp 846–854

    Google Scholar 

  27. Watts J, Strogatz SH (1998) Collective dynamics of ‘Smallworld’ networks. Nature 393(6684):440–442

    Article  Google Scholar 

  28. Wei K et al (2015) Exploiting Small world properties for message forwarding in delay tolerant networks. IEEE Trans Comput 64(10):2809–2818

    Article  MathSciNet  Google Scholar 

  29. Kleinberg J (2000) The small-world phenomenon: an algorithmic perspective. In: Proceedings of STOC, pp 163–170

    Google Scholar 

  30. Ahmed S, Kanhere SS (2010) Characterization of a large-scale delay tolerant network. In: Proceedings of LCN, pp 56–63

    Google Scholar 

  31. Bhattacharjee S, Basu S, Roy S, DasBit S (2016) Best-effort delivery of emergency messages in Post-Disaster Scenario with content-based filtering and priority-enhanced PRoPHET over DTN. In: Proceedings of IEEE COMSNETS, pp 1–7

    Google Scholar 

  32. Bhattacharjee S, Roy S, Bandyopadhyay S (2014) Exploring an energy-efficient DTN framework supporting disaster management services in post disaster relief operation. Wirel Netw 21(3):1033–104

    Article  Google Scholar 

  33. Wang W, Zwolinski M (2013) An improved instruction-level power model for ARM11 microprocessor. In: Proceedings of HIP3ES, pp 1–7

    Google Scholar 

  34. Google Map of Water, Food, Shelter and Medical Resources for Nepal Earthquake. (2015). Available via https://www.google.com/maps/d/viewer?mid=1Iv7GILViqyJAFn5o5hi1F2Fg8mc&hl=en_US. Accessed July 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souvik Basu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Basu, S., Roy, S., Das Bit, S. (2019). Need Accumulation Over DTN. In: Reliable Post Disaster Services over Smartphone Based DTN. Smart Innovation, Systems and Technologies, vol 137. Springer, Singapore. https://doi.org/10.1007/978-981-13-6573-7_3

Download citation

Publish with us

Policies and ethics