Skip to main content

Expectation Algorithm (ExA): A Socio-inspired Optimization Methodology

  • Chapter
  • First Online:
Socio-cultural Inspired Metaheuristics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 828))

Abstract

This paper introduces a new socio-inspired algorithm referred to as Expectation Algorithm (ExA), which is mainly inspired from the society individuals. The ExA modelled the variables of the problems as individuals of a society. The variables select their values by expecting the values of the other variables minimizing the objective function. The performance of the algorithm is validated by solving 50 unconstrained test problems with dimensions up to 30. The solutions were compared with several recent algorithms such as Covariance Matrix Adaptation Evolution Strategy, Artificial Bee Colony, Comprehensive Learning Particle Swarm Optimization, Self-adaptive Differential Evolution Algorithm, Backtracking Search Optimization Algorithm, Ideology Algorithm and Multi-Cohort Intelligence algorithm. The Wilcoxon signed-rank test was carried out for the statistical analysis and verification of the performance. The results from this study highlighted that the ExA outperformed most of the other algorithms in terms of function evaluations and computational time. The prominent features of the ExA algorithm along with the limitations are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10:646–657

    Article  Google Scholar 

  2. Chen XS, Ong YS, Lim MH, Tan KC (2011) A multi-facet survey on memetic computation. IEEE Trans Evol Comput 15(5):591–607

    Article  Google Scholar 

  3. Cheng MY, Prayogo D (2014) Symbiotic Organisms Search: a new metaheuristic optimization algorithm. Comput Struct 139(15):98–112

    Article  Google Scholar 

  4. Civicioglu P (2013) Backtracking search optimization algorithm for numerical optimization problems. Appl Math Comput 219:8121–8144

    Article  MathSciNet  Google Scholar 

  5. Das S, Biswas A, Dasgupta S, Abraham A (2009) Bacterial foraging optimization algorithm: theoretical foundations, analysis and applications. Found Comput Intell 3:23–55

    Google Scholar 

  6. Dorigo M, Di Caro G (1999) Ant colony optimization: a new meta-heuristic, In Proceedings of the IEEE congress on evolutionary computation, Piscataway, NJ, pp 1470–1477

    Google Scholar 

  7. Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micromachine and human science, Nagoya, Japan, pp 39–43

    Google Scholar 

  8. Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf Sci 222:175–184

    Article  MathSciNet  Google Scholar 

  9. Igel C, Hansen N, Roth S (2007) Covariance matrix adaptation for multi-objective optimization. Evol Comput 15(1):1–28

    Article  Google Scholar 

  10. Kao YT, Zahara E (2008) A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Appl Soft Comput 8(2):849–857

    Google Scholar 

  11. Karaboga D (2007) Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39:459–471

    MathSciNet  MATH  Google Scholar 

  12. Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132

    MathSciNet  MATH  Google Scholar 

  13. Husseinzadeh Kashan A (2014) League championship algorithm (LCA): an algorithm for global optimization inspired by sport championships. Appl Soft Comput 16:171–200

    Google Scholar 

  14. Kulkarni AJ, Durugkar IP, Kumar M (2013) Cohort intelligence: a self-supervised learning behaviour. In: IEEE International conference on systems, man, and cybernetics (SMC), pp 1396–1400

    Google Scholar 

  15. Kulkarni A J, Krishnasamy G, Abraham A (2017) Cohort intelligence: a socio-inspired optimization method. Intelligent Systems Reference Library 114, Springer. https://doi.org/10.1007/978-3-319-44254-9. ISBN 978-3-319-44254-9

  16. Langdon WB (1998) Genetic programming and data structures. Springer, USA. https://doi.org/10.1007/978-1-4615-5731-9

  17. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10:281–295

    Article  Google Scholar 

  18. Liu J, Zhou Y, Huang K, Ouyang Z, Wang Y (2011) A glowworm swarm optimization algorithm based on definite updating search domains. J Comput Inf Syst 7(10):3698–3705

    Google Scholar 

  19. Maulik U, Bandyopadhyay S (2000) Genetic algorithm-based clustering technique. Pattern Recogn 33(9):1455–1465

    Article  Google Scholar 

  20. Niknam T, Amiri B (2010) An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis. Appl Soft Comput 10(1):183–197

    Google Scholar 

  21. Price KV, Storn RM, Lampinen JA (2005) Differential evolution: a practical approach to global optimization. Springer, New York

    MATH  Google Scholar 

  22. Qin AK, Suganthan PN (2005) Self-adaptive differential evolution algorithm for numerical optimization. IEEE Trans Evol Comput 1(3):1785–1791

    Google Scholar 

  23. Rabanal P, Rodríguez I, Rubio F (2007) Using river formation dynamics to design heuristic algorithms. In: International conference on unconventional computation. Lecture notes in computer science, 4618

    Google Scholar 

  24. Satapathy S, Naik A (2016) Social group optimization (SGO): a new population evolutionary optimization technique. Complex Intell Syst 2:173–203

    Google Scholar 

  25. Selim SZ, Alsultan K (1991) A simulated annealing algorithm for the clustering problem. Pattern Recogn 24(10):1003–1008

    MathSciNet  Google Scholar 

  26. Shastri AS, Kulkarni AJ (2018) Multi-cohort intelligence algorithm: an intra- and inter-group learning behaviour based socio-inspired optimisation methodology. Int J Parallel Emerg Distrib Syst. https://doi.org/10.1080/17445760.2018.1472262

  27. Shelokar PS, Jayaraman VK, Kulkarni BD (2004) An ant colony approach for clustering. Analytica Chimica Acta 509(2):187–195

    Google Scholar 

  28. Shi W, Song X, Sun J (2014) Automatic heuristic generation with scatter programming to solve the hybrid flow shop problem. Adv Mech Eng Article ID 587038

    Google Scholar 

  29. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Google Scholar 

  30. Teo T H, Kulkarni A J, Kanesan J, Chuah J H, Abraham A (2017) Ideology algorithm: a socio-inspired optimization methodology. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2379-4

  31. Tilahun SL, Ong HC (2015) Prey-predator algorithm: a new metaheuristic algorithm for optimization problems. Int J Inf Technol Decision Mak 14

    Google Scholar 

  32. Timmis J, Neal M, Hunt J (2000) An artificial immune system for data analysis. Bio Syst 55(1):143–150

    Google Scholar 

  33. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1)

    Google Scholar 

  34. Yang XS (2009) Firefly algorithms for multimodal optimization. Lect Notes Comput Sci 5792:169–178

    MathSciNet  MATH  Google Scholar 

  35. Yang XS (2010) A new metaheuristic bat-inspired algorith0m, nature inspired cooperative strategies for optimization. Stud Comput Intell 284:65–74

    MATH  Google Scholar 

  36. Yang XS, Xingshi H (2013) Bat algorithm: literature review and applications. Int J Bio-Inspired Comput 5(3). https://doi.org/10.1504/ijbic.2013.055093

  37. Yang XS, Deb S (2009) Cuckoo search via levy flights. In: World congress on nature and biologically inspired computing, Coimbatore, India, vol 4, pp 210–214

    Google Scholar 

  38. Zou D, Gao L, Li S, Wu J (2011) An effective global harmony search algorithm for reliability problems. Expert Syst Appl 38(4):4642–4648

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apoorva S. Shastri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shastri, A.S., Jagetia, A., Sehgal, A., Patel, M., Kulkarni, A.J. (2019). Expectation Algorithm (ExA): A Socio-inspired Optimization Methodology. In: Kulkarni, A.J., Singh, P.K., Satapathy, S.C., Husseinzadeh Kashan, A., Tai, K. (eds) Socio-cultural Inspired Metaheuristics. Studies in Computational Intelligence, vol 828. Springer, Singapore. https://doi.org/10.1007/978-981-13-6569-0_10

Download citation

Publish with us

Policies and ethics