Skip to main content
  • 312 Accesses

Abstract

For the heterogeneous distributed embedded systems, this chapter solves the problem of minimizing the energy consumption of a real-time parallel application by using the combined non-DVFS and global DVFS-enabled energy-efficient scheduling algorithms. The non-DVFS energy-efficient scheduling (NDES) algorithm is solved by introducing the concept of deadline slacks to reduce the energy consumption while satisfying the deadline constraint. The global DVFS-enabled energy-efficient scheduling (GDES) algorithm is presented by moving the tasks to the processor slacks that generate minimum dynamic energy consumptions. For heterogeneous distributed cloud systems, this chapter presents an energy-efficient processor merging (EPM) algorithm to turn off the most energy-consuming processor from the energy saving perspective, and a quick EPM (QEPM) algorithm to reduce the computation complexity of EPM. Finally, this chapter will give a large number of experiments to verify the validation and efficiency of proposed algorithms. For different heterogeneous distributed systems (heterogeneous distributed embedded systems and heterogeneous distributed cloud systems), this chapter presents different compared algorithms to evaluate the performance of proposed algorithms at different scales, parallelism, and heterogeneity degrees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://sourceforge.net/projects/taskgraphgen/

  2. Arabnejad, H., Barbosa, J.G.: List scheduling algorithm for heterogeneous systems by an optimistic cost table. IEEE Trans. Parallel Distrib. Syst. 25(3), 682–694 (2014)

    Article  Google Scholar 

  3. Bambagini, M., Marinoni, M., Aydin, H., Buttazzo, G.: Energy-aware scheduling for real-time systems: a survey. ACM Trans. Embed. Comput. Syst. 15(1), 303–307 (2016)

    Article  Google Scholar 

  4. Bansal, S., Kumar, P., Singh, K.: An improved duplication strategy for scheduling precedence constrained graphs in multiprocessor systems. IEEE Trans. Parallel Distrib. Syst. 14(6), 533–544 (2003)

    Article  Google Scholar 

  5. Barnett, J., et al.: Dynamic task-level voltage scheduling optimizations. IEEE Trans. Comput. 54(5), 508–520 (2005)

    Article  Google Scholar 

  6. Batalla, J.M., Kantor, M., Mavromoustakis, C.X., Skourletopoulos, G., Mastorakis, G.: A novel methodology for efficient throughput evaluation in virtualized routers. In: IEEE International Conference on Communications, pp. 6899–6905. IEEE (2015)

    Google Scholar 

  7. Bernat, G., Colin, A., Petters, S.M.: WCET analysis of probabilistic hard real-time systems. In: Proceedings of the 23rd IEEE Real-Time Systems Symposium, pp. 279–288. IEEE (2002)

    Google Scholar 

  8. Bunde, D.P.: Power-aware scheduling for makespan and flow. In: Proceedings of the 18th Annual ACM Symposium Parallelism in Algorithms and Architectures, pp. 190–196. ACM (2006)

    Google Scholar 

  9. Chen, S., Li, Z., Yang, B., Rudolph, G.: Quantum-inspired hyper-heuristics for energy-aware scheduling on heterogeneous computing systems. IEEE Trans. Parallel Distrib. Syst. 27(6), 1796–1810 (2016)

    Article  Google Scholar 

  10. Convolbo, M.W., Chou, J.: Cost-aware DAG scheduling algorithms for minimizing execution cost on cloud resources. J. Supercomput. 72(3), 985–1012 (2016)

    Article  Google Scholar 

  11. Davis, R.I., Burns, A.: A survey of hard real-time scheduling for multiprocessor systems. ACM Comput. Surv. (CSUR) 43(4), 35 (2011)

    Google Scholar 

  12. Ferrandi, F., Lanzi, P.L., Pilato, C., Sciuto, D., Tumeo, A.: Ant colony heuristic for mapping and scheduling tasks and communications on heterogeneous embedded systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(6), 911–924 (2010)

    Article  Google Scholar 

  13. Huang, Q., Su, S., Li, J., Xu, P., Shuang, K., Huang, X.: Enhanced energy-efficient scheduling for parallel applications in cloud. In: Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID 2012), pp. 781–786. IEEE Computer Society (2012)

    Google Scholar 

  14. Kashani, M.H., Jahanshahi, M.: Using simulated annealing for task scheduling in distributed systems. In: International Conference on Computational Intelligence, Modelling and Simulation, pp. 265–269. IEEE (2009)

    Google Scholar 

  15. Kuo, C.F., Lu, Y.F.: Task assignment with energy efficiency considerations for non-dvs heterogeneous multiprocessor systems. ACM Sigapp Appl. Comput. Rev. 14(4), 8–18 (2015)

    Article  Google Scholar 

  16. Langen, P.D., Juurlink, B.: Leakage-aware multiprocessor scheduling. J. Signal Process. Syst. 57(1), 73–88 (2009)

    Article  Google Scholar 

  17. Lee, Y.C., Zomaya, A.Y.: Energy conscious scheduling for distributed computing systems under different operating conditions. IEEE Trans. Parallel Distrib. Syst. 22(8), 1374–1381 (2011)

    Article  Google Scholar 

  18. Li, K.: Energy and time constrained task scheduling on multiprocessor computers with discrete speed levels. J. Parallel Distrib. Comput. 95, 15–28 (2016)

    Article  Google Scholar 

  19. Li, K.: Scheduling precedence constrained tasks with reduced processor energy on multiprocessor computers. IEEE Trans. Comput. 61(12), 1668–1681 (2012)

    Article  MathSciNet  Google Scholar 

  20. Liu, J., Zhuge, Q., Gu, S., Hu, J., Zhu, G., Sha, E.H.M.: Minimizing system cost with efficient task assignment on heterogeneous multicore processors considering time constraint. IEEE Trans. Parallel Distrib. Syst. 25(8), 2101–2113 (2014)

    Article  Google Scholar 

  21. Niu, J., Liu, C., Gao, Y., Qiu, M.: Energy efficient task assignment with guaranteed probability satisfying timing constraints for embedded systems. IEEE Trans. Parallel Distrib. Syst. 25(8), 2043–2052 (2014)

    Article  Google Scholar 

  22. Singh, J., Betha, S., Mangipudi, B., Auluck, N.: Contention aware energy efficient scheduling on heterogeneous multiprocessors. IEEE Trans. Parallel Distrib. Syst. 26(5), 1251–1264 (2015)

    Article  Google Scholar 

  23. Swiecicka, A., Seredynski, F., Zomaya, A.Y.: Multiprocessor scheduling and rescheduling with use of cellular automata and artificial immune system support. IEEE Trans. Parallel Distrib. Syst. 17(3), 253–262 (2006)

    Article  Google Scholar 

  24. Tămaş-Selicean, D., Pop, P.: Design optimization of mixed-criticality real-time embedded systems. ACM Trans. Embed. Comput. Syst. 14(3), 50 (2015)

    Article  Google Scholar 

  25. Tang, Z., Qi, L., Cheng, Z., Li, K., Khan, S.U., Li, K.: An energy-efficient task scheduling algorithm in DVFS-enabled cloud environment. J. Grid Comput. 14(1), 55–74 (2016)

    Article  Google Scholar 

  26. Tarplee, K.M., Friese, R., Maciejewski, A.A., Siegel, H.J., Chong, E.K.: Energy and makespan tradeoffs in heterogeneous computing systems using efficient linear programming techniques. IEEE Trans. Parallel Distrib. Syst. 27(6), 1633–1646 (2016)

    Article  Google Scholar 

  27. Thanavanich, T., Uthayopas, P.: Efficient energy aware task scheduling for parallel workflow tasks on hybrids cloud environment. In: International Computer Science Engineering Conference, pp. 37–42. IEEE (2013)

    Google Scholar 

  28. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13(3), 260–274 (2002)

    Article  Google Scholar 

  29. Wu, A.S., Yu, H., Jin, S., Lin, K.C., Schiavone, G.: An incremental genetic algorithm approach to multiprocessor scheduling. IEEE Trans. Parallel Distrib. Syst. 15(9), 824–834 (2004)

    Article  Google Scholar 

  30. Xiao, X., Xie, G., Li, R., Li, K.: Minimizing schedule length of energy consumption constrained parallel applications on heterogeneous distributed systems. In: Proceedings of the 14th IEEE International Symposium on Parallel Distributed Processing with Applications, pp. 1471–1476. IEEE Computer Society (2016)

    Google Scholar 

  31. Xie, G., Li, R., Li, K.: Heterogeneity-driven end-to-end synchronized scheduling for precedence constrained tasks and messages on networked embedded systems. J. Parallel Distrib. Comput. 83, 1–12 (2015)

    Article  Google Scholar 

  32. Xie, G., Liu, L., Yang, L., Li, R.: Scheduling trade-off of dynamic multiple parallel workflows on heterogeneous distributed computing systems. Concurr. Comput. Pract. Exp. 29(8), 1–18 (2017). https://doi.org/10.1002/cpe.3782

    Google Scholar 

  33. Xie, G., Xiao, X., Li, R., Li, K.: Schedule length minimization of parallel applications with energy consumption constraints using heuristics on heterogeneous distributed systems. Concurr. Comput. Pract. Exp. 1–10 (2016). https://doi.org/10.1002/cpe.4024

  34. Xie, G., Zeng, G., Chen, Y., Bai, Y., Zhou, Z., Li, R., Li, K.: Minimizing redundancy to satisfy reliability requirement for a parallel application on heterogeneous service-oriented systems. IEEE Trans. Serv. Comput. 1–1 (2017). https://doi.org/10.1109/TSC.2017.2665552

  35. Xie, Y., Zeng, G., Chen, Y., Kurachi, R., Takada, H., Li, R.: Worst case response time analysis for messages in controller area network with gateway. IEICE Trans. Inf. Syst. 96(7), 1467–1477 (2013)

    Article  Google Scholar 

  36. Xu, Y., Li, K., He, L., Zhang, L., Li, K.: A hybrid chemical reaction optimization scheme for task scheduling on heterogeneous computing systems. IEEE Trans. Parallel Distrib. Syst. 26(12), 3208–3222 (2015)

    Article  Google Scholar 

  37. Zeng, G., Matsubara, Y., Tomiyama, H., Takada, H.: Energy-aware task migration for multiprocessor real-time systems. Futur. Gener. Comput. Syst. 56, 220–228 (2016)

    Article  Google Scholar 

  38. Zhao, B., Aydin, H., Zhu, D.: On maximizing reliability of real-time embedded applications under hard energy constraint. IEEE Trans. Ind. Inf. 6(3), 316–328 (2010)

    Article  Google Scholar 

  39. Zhao, B., Aydin, H., Zhu, D.: Shared recovery for energy efficiency and reliability enhancements in real-time applications with precedence constraints. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 18(2), 23 (2013)

    Google Scholar 

  40. Zhao, L., Ren, Y., Sakurai, K.: Reliable workflow scheduling with less resource redundancy. Parallel Comput. 39(10), 567–585 (2013)

    Article  MathSciNet  Google Scholar 

  41. Zhao, L., Ren, Y., Xiang, Y., Sakurai, K.: Fault-tolerant scheduling with dynamic number of replicas in heterogeneous systems. In: Proceedings of the 12th IEEE International Conference on High Performance Computing and Communications, pp. 434–441. IEEE (2010)

    Google Scholar 

  42. Zhu, D., Aydin, H.: Reliability-aware energy management for periodic real-time tasks. IEEE Trans. Comput. 58(10), 1382–1397 (2009)

    Article  MathSciNet  Google Scholar 

  43. Zhuravlev, S., Saez, J.C., Blagodurov, S., Fedorova, A., Prieto, M.: Survey of energy-cognizant scheduling techniques. IEEE Trans. Parallel Distrib. Syst. 24(7), 1447–1464 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xie, G., Zeng, G., Li, R., Li, K. (2019). Energy-Efficient Real-Time Scheduling. In: Scheduling Parallel Applications on Heterogeneous Distributed Systems. Springer, Singapore. https://doi.org/10.1007/978-981-13-6557-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6557-7_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6556-0

  • Online ISBN: 978-981-13-6557-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics