Skip to main content

Rhizobacteria as Bioprotectants Against Stress Conditions

  • Chapter
  • First Online:
Plant Growth Promoting Rhizobacteria for Sustainable Stress Management

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 12))

Abstract

The area around the plant which is under the influence of plant roots, known as the rhizosphere, is an attractive habitat for soil microorganisms. However, although a variety of root-colonizing bacteria exist, the beneficial bacteria also called plant growth-promoting bacteria (PGPR) or rhizobacteria essentially serve as bioprotectants against stress conditions. Environmental abiotic stresses such as drought, salinity, and metal contamination, as well as biotic stresses from opportunistic pathogens, present a major challenge as it reduces the potential yields of food production. Rhizobacteria are of immense interest because they compete with indigenous bacteria and increase plant resistance against stress conditions. These bacteria have a number of traits that contribute to root colonization such as the presence of specific cell surface components, pili, fimbriae, chemotaxis toward plant exudates, ability to use specific components of plant exudates, protein secretion property, ability to form biofilms, and quorum sensing. The production of biologically active metabolites and the regulation of ACC deaminase are some of the principal mechanisms by which rhizobacteria modify the rhizosphere environment thereby enhancing plant growth. This article seeks to give an overview of mechanisms in rhizobacteria proposed to enhance stress tolerance conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66(8):3393–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali SKZ, Sandhya V, Grover M, Kishore N, Rao LV, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soils 46:45–55

    Article  CAS  Google Scholar 

  • Ali SKZ, Sandhya V, Grover M, Rao LV, Venkateswarlu B (2011) Effect of inoculation with a thermotolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. J Plant Interact 6:239–246

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315. https://doi.org/10.1007/s11104-007-9233-5

    Article  CAS  Google Scholar 

  • Asch F, Padham JL (2005) Root associated bacteria suppress symptoms of iron toxicity in lowland rice. In: Tielkes E, Hülsebusch C, Häuser I, Deininger A, Becker K (eds) The global food & product chain – dynamics, innovations, conflicts, strategies. MDD GmbH, Stuttgart, p 276

    Google Scholar 

  • Ashraf M, McNeilly T (2004) Salinity tolerance in Brassica oilseeds. Crit Rev Plant Sci 23:157–174

    Article  CAS  Google Scholar 

  • Aslantas R, Cakmakci R, Sahin F (2007) Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Sci Hortic 111:371–377

    Article  Google Scholar 

  • Azar F, Mozafari V, Dahaji PA, Hamidpour M (2016) Biochemical, physiological and antioxidant enzymatic activity responses of pistachio seedlings treated with plant growth promoting rhizobacteria and Zn to salinity stress. Acta Physiol Plant 38:21

    Article  CAS  Google Scholar 

  • Bais HP, Loyola Vargas VM, Flores HE, Vivanco JM (2001) Root specific metabolism: the biology and biochemistry of underground organs. In Vitro Cell Dev Biol Plant 37:730–741

    Article  CAS  Google Scholar 

  • Bais HP, Walker TS, Schweizer HP, Vivanco JM (2002) Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of sweet basil (Ocimum basilicum L.). Plant Physiol Biochem 40:983–995

    Article  CAS  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trend Plant Sci 9:26–32

    Article  CAS  Google Scholar 

  • Banerjee S, Palit R, Sengupta C, Standing D (2010) Stress induced phosphate solubilization by Arthrobacter sp. and Bacillus sp. isolated from tomato rhizosphere. Aust J Crop Sci 4(6):378–383

    CAS  Google Scholar 

  • Barber DA, Martin JK (1976) The release of organic substances by cereal roots in soil. New Phytol 76:69–80

    Article  CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Barnawal D, Bharti N, Pandey SS, Pandey A, Chanotiya CS, Kalra A (2017) Plant growth promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol Plant 161:502–514. https://doi.org/10.1111/ppl.12614

    Article  CAS  PubMed  Google Scholar 

  • Bell TH, Callender KL, Whyte LG, Greer CW (2013) Microbial competition in polar soils: a review of an understudied but potentially important control on productivity. Biology 2(2):533–554. https://doi.org/10.3390/biology2020533

    Article  PubMed  PubMed Central  Google Scholar 

  • Bensalim S, Nowak J, Asiedu SK (1998) A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res 75:145–152

    Article  Google Scholar 

  • Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A (2016) Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 6:34768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J Exp Bot 60(11):3097–3107. https://doi.org/10.1093/jxb/erp140

    Article  PubMed  Google Scholar 

  • Bianco C, Defez R (2011) Soil bacteria support and protect plants against abiotic stresses. In: Shanker A (ed) Abiotic stress in plants. IntechOpen, pp 143–170. https://doi.org/10.5772/23310

    Google Scholar 

  • Bisseling T, Dangl JL, Schulze-Lefert P (2009) Next-generation communication. Science 324:691. https://doi.org/10.1126/science.1174404

    Article  CAS  PubMed  Google Scholar 

  • Brigham LA, Michaels PJ, Flores HE (1999) Cell-specific production and antimicrobial activity of naphthoquinones in roots of Lithospermum erythrorhizon. Plant Physiol 119:417–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64(10):3663–3668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46(3):237–245. https://doi.org/10.1139/w99-143

    Article  CAS  PubMed  Google Scholar 

  • Buscot F (2005) What are soils? In: Buscot F, Varma S (eds) Micro-organisms in soils: roles in genesis and functions. Springer, Heidelberg, pp 3–18

    Chapter  Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate (ACC) deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53(7):912–918

    Article  CAS  PubMed  Google Scholar 

  • Chun Juan W, Ya Hui G, Chao W, Hong Xia L, Dong Dong N, Yun Peng W, Jian Hua G (2012) Enhancement of tomato (Lycopersicon esculentum) tolerance to drought stress by plant-growth-promoting rhizobacterium (PGPR) Bacillus cereus AR156. J Agric Biotechnol 20:1097–1105

    Google Scholar 

  • Crowley DE (2006) Microbial siderophores in the plant rhizosphere. In: Barton LL, Abadía J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Dordrecht, pp 169–198

    Chapter  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. In: Adu-Gyamfi JJ (ed) Food security in nutrient-stressed environments: exploiting plants’ genetic capabilities, Developments in Plant and Soil Sciences, vol 95. Springer, Dordrecht, pp 201–213. https://doi.org/10.1007/978-94-017-1570-6_23

    Chapter  Google Scholar 

  • Dashti N, Zhang F, Hynes R, Smith DL (1998) Plant growth promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean [Glycine max (L.) Merr.] under short season conditions. Plant Soil 200(2):205–213. https://doi.org/10.1023/A:1004358100856

    Article  CAS  Google Scholar 

  • Daur I, Saad MM, Eida AA, Ahmad S, Shah ZH, Ihsan MZ, Muhammad Y, Sohrab SS, Hirt H (2018) Boosting Alfalfa (Medicago sativa L.) production with rhizobacteria from various plants in Saudi Arabia. Front Microbiol 9:477. https://doi.org/10.3389/fmicb.2018.00477

    Article  PubMed  PubMed Central  Google Scholar 

  • Dekkers LC, Phoelich CC, Lugtenberg BJJ (1999) Bacterial traits and genes involved in rhizosphere colonization in microbial biosystems: new frontiers proceedings of the 8th international symposium on microbial ecology. In: Bell CR, Brylinsky M, Johnson-Green P (eds) Atlantic Canada society for microbial ecology, Halifax, Canada

    Google Scholar 

  • Del Gallo M, Fendrik I (1994) The rhizosphere and Azospirillum. In: Okon Y (ed) Azospirillum/plant associations. CRC Press, Boca Raton, pp 57–75

    Google Scholar 

  • Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40(1):74–84. ISSN: 0038-0717. https://doi.org/10.1016/j.soilbio.2007.06.024

    Article  CAS  Google Scholar 

  • Dimkpa CO, Svatoš A, Merten D, Büchel G, Kothe E (2008a) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54:163–172

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Svatos A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008b) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74(1):19–25. https://doi.org/10.1016/j.chemosphere.2008.09.079

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Merten D, Svatoš A, Büchel G, Kothe E (2009a) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41:154–162

    Article  CAS  Google Scholar 

  • Dimkpa CO, Weinand T, Asch F (2009b) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694. https://doi.org/10.1111/j.1365-3040.2009.02028.x

    Article  CAS  PubMed  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149. https://doi.org/10.1080/713610853

    Article  CAS  Google Scholar 

  • Doornbos RF, Van Loon LC, Peter AHM, Bakker A (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. Rev Sustain Dev 32:227–243

    Article  Google Scholar 

  • Estabrook EM, Yoder JI (1998) Plant–plant communications: rhizosphere signaling between parasitic angiosperms and their probes. Plant Physiol 116:1–7

    Article  CAS  PubMed Central  Google Scholar 

  • Fernàndez LA, Berenguer J (2000) Secretion and assembly of regular surface structures in Gram-negative bacteria. FEMS Microbiol Rev 24:21–44

    Article  PubMed  Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co- inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Flores HE, Vivanco JM, Loyola-Vargas VM (1999) “Radicle” biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4:220–226

    Article  CAS  PubMed  Google Scholar 

  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152. https://doi.org/10.1007/s00253-007-1077-7

    Article  CAS  PubMed  Google Scholar 

  • Fukami J, Ollero FJ, Megías M, Hungria M (2017) Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth. AMB Exp 7:153. https://doi.org/10.1186/s13568-017-0453-7

    Article  CAS  Google Scholar 

  • García-Cristobal J, García-Villaraco A, Ramos B, Gutierrez-Mañero J, Lucas JA (2015) Priming of pathogenesis related-proteins and enzymes related to oxidative stress by plant growth promoting rhizobacteria on rice plants upon abiotic and biotic stress challenge. J Plant Physiol 188:72–79. https://doi.org/10.1016/j.jplph.2015.09.011. Epub 2015 Sep 28

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London. https://doi.org/10.1142/p130

    Book  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Wang R, Yang Z, Zhan Y, Ma Y, Ping S, Zhang W, Lin M, Yan Y (2015) 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas stutzeri A1501 facilitates the growth of rice in the presence of salt or heavy metals. J Microbiol Biotechnol 25:1119–1128

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, van Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471. https://doi.org/10.1016/j.tim.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Reg 21:79–102

    Article  CAS  Google Scholar 

  • Heidari M, Golpayegani A (2012) Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). J Saudi Soc Agric Sci 11(1):57–61

    Google Scholar 

  • Hendry GA (2005) Oxygen free radical process and seed longevity. Seed Sci J 3:141–147

    Article  Google Scholar 

  • Huang S, Dai Q, Peng S, Chavez AQ, Miranda LL, Visperas RM, Vergara BS (1997) Influence of supplemental ultraviolet-B on indole acetic acid and calmodulin in the leaves of rice (Oryza sativa L). Plant Growth Regul 21:59–64

    Article  CAS  Google Scholar 

  • Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33(3):797–802

    Article  Google Scholar 

  • Joo GJ, Kim YM, Kim JT, Rhee IK, Kim JH, Lee IJ (2005) Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 43:510–515

    CAS  PubMed  Google Scholar 

  • Kang S, Khan AL, Waqas M, You Y, Kim J, Hamayun M, Lee I (2014) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9(1):673–682. https://doi.org/10.1080/17429145.2014.894587

    Article  CAS  Google Scholar 

  • Kasotia A, Varma A, Tuteja N, Choudhary DK (2016) Microbial-mediated amelioration of plants under abiotic stress: an emphasis on arid and semiarid climate. In: Plant-microbe interaction: an approach to sustainable agriculture, pp 155–163. https://doi.org/10.1007/978-981-10-2854-0_7

    Chapter  Google Scholar 

  • Kavi Kishor PB, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria, vol 2. Station de Pathologie Végétale et de Phytobactériologie. INRA, Angers, pp 879–882

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 4:317–320

    Article  CAS  Google Scholar 

  • Lal S, Dhingra GK, Sharma S, Pokhriyal P, Das R, Gupta A, Kuriyal S (2011) UV-B irradiance induced deleterious effects on the net primary productivity and counteracted by some plant growth regulators (PGRs), in Brassica campestris PT-303 (brown sarson). Int J Plant Anim Environ Sci 1:202–209

    CAS  Google Scholar 

  • Lombard N, Prestat E, van Elsas JD, Simonet P (2011) Soil-specific limitations for access and analysis of soil microbial communities by metagenomics. FEMS Microbiol Ecol 78(1):31–49. https://doi.org/10.1111/j.1574-6941.2011.01140.x

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. J Hazard Mat 320:36–44

    Article  CAS  Google Scholar 

  • Mahmood S, Daur I, Al-Solaimani SG, Ahmad S, Madkour MH, Yasir M, Hirt H, Ali S, Ali Z (2016) Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front Plant Sci 7:876. https://doi.org/10.3389/fpls.2016.00876

    Article  PubMed  PubMed Central  Google Scholar 

  • Mansour MMF (2000) Nitrogen containing compounds and adaptation of plants to salinity stress. Biol Plant 43(4):491–500

    Article  CAS  Google Scholar 

  • Martin HV, Elliott MC (1984) Ontogenetic changes in the transport of indol-3yl-acetic acid into maize roots from the shoot and caryopsis. Plant Physiol 74:971–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marulanda A, Barea J-M, Azcón R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28(2):115–124

    Article  CAS  Google Scholar 

  • Marulanda A, Azcon R, Chaumont F, Ruiz-Lozano JM, Aroca R (2010) Regulation of plasma membrane aquaporins by inoculation with Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232:533–543

    Article  CAS  PubMed  Google Scholar 

  • Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anollés G, Rolfe BG, Bauer WD (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci USA 100:1444–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572. https://doi.org/10.1016/j.plaphy.2004.05.009

    Article  CAS  PubMed  Google Scholar 

  • McNear DH Jr (2013) The rhizosphere – roots, soil and everything in between. Nat Educ Knowl 4(3):1

    Google Scholar 

  • Merritt PM, Danhorn T, Fuqua C (2007) Motility and chemotaxis in Agrobacterium tumefaciens surface attachment and biofilm formation. J Bacteriol 189:8005–8014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair A, Abraham TK, Jaya DS (2008) Studies on the changes in lipid peroxidation and antioxidants in drought stress induced in cowpea (Vigna unguiculata L.) varieties. J Environ Biol 29:689–691

    CAS  PubMed  Google Scholar 

  • Nardi S, Concheri G, Pizzeghello D, Sturaro A, Rella R, Parvoli G (2000) Soil organic matter mobilization by root exudates. Chemosphere 5:653–658

    Article  Google Scholar 

  • Naznin HA, Kimura M, Miyazawa M, Hyakumachi M (2012) Analysis of volatile organic compounds emitted by plant growth promoting fungus Phoma sp. GS8- 3 for growth promotion effects on tobacco. Microbe Environ 28:42–49

    Article  Google Scholar 

  • Nehra V, Saharan BS, Choudhary M (2016) Evaluation of Brevibacillus brevis as a potential plant growth promoting rhizobacteria for cotton (Gossypium hirsutum) crop. Springer Plus 5:948. https://doi.org/10.1186/s40064-016-2584-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman EI (1985) The rhizosphere: carbon sources and microbial populations. In: Fitter AH (ed) Ecological interactions in soil. Blackwell Scientific Publications, Oxford, p 107

    Google Scholar 

  • Ortiz-Castro R, Díaz-Pérez C, Martínez-Trujillo M, del Río RE, Campos-García J, López-Bucio J (2011) Trans kingdom signaling based on bacterial cyclodipeptides with auxin activity in plants. Proc Natl Acad Sci 108(17):7253–7258. https://doi.org/10.1073/pnas.1006740108

    Article  PubMed  PubMed Central  Google Scholar 

  • Oves M, Khan MS, Zaidi A (2013) Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. Eur J Soil Biol 56:72–83

    Article  CAS  Google Scholar 

  • Paredes-Páliz K, Rodríguez-Vázquez R, Duarte B, Caviedes MA, Mateos-Naranjo E, Redondo-Gómez S, Caçador MI, Rodríguez-Llorente ID, Pajuelo E (2018) Investigating the mechanisms underlying phytoprotection by plant growth-promoting rhizobacteria in Spartina densiflora under metal stress. Plant Biol (Stuttg) 20(3):497–506. https://doi.org/10.1111/plb.12693. Epub 2018 Mar 6

    Article  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Appl Environ Microbiol 68(8):3795–3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul D, Nair S (2008) Stress adaptations in a Plant Growth Promoting Rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol. 48(5):378–84

    Article  CAS  PubMed  Google Scholar 

  • Paul D, Dineshkumar N, Nair S (2006) Proteomics of a plant growth-promoting rhizobacterium, Pseudomonas fluorescens MSP-393, subjected to salt shock. World J Microbiol Biotechnol 22(4):369–374. https://doi.org/10.1007/s11274-005-9043-y

    Article  CAS  Google Scholar 

  • Pérez-Flores P, Valencia-Cantero E, Altamirano-Hernández J, Pelagio-Flores R, López-Bucio J, García-Juárez P, Macías-Rodríguez L (2017) Bacillus methylotrophicus M4-96 isolated from maize (Zea mays) rhizoplane increases growth and auxin content in Arabidopsis thaliana via emission of volatiles. Protoplasma 254(6):2201–2213. https://doi.org/10.1007/s00709-017-1109-9. Epub 2017 Apr 12

    Article  CAS  PubMed  Google Scholar 

  • Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz OA, Cassán FD, Luna MV (2007) Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Appl Microbiol Biotechnol 75(5):1143–1150. https://doi.org/10.1007/s00253-007-0909-9

    Article  CAS  PubMed  Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant–rhizobacteria interactions. Plant Cell Environ 26(2):189–199

    Article  CAS  Google Scholar 

  • Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980

    Article  CAS  PubMed  Google Scholar 

  • Rahdari P, Hosseini SM, Tavakoli S (2012) The studying effect of drought stress on germination, proline, sugar, lipid, protein and chlorophyll content in purslane (Portulaca oleracea L.) leaves. J Med Plants Res 6(9):1539–1547. https://doi.org/10.5897/JMPR

    Article  CAS  Google Scholar 

  • Rajendhran J, Gunasekaran P (2008) Strategies for accessing soil metagenome for desired applications. Biotechnol Adv 26(6):576–590

    Article  CAS  PubMed  Google Scholar 

  • Rizvi A, Khan MS (2018) Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum. Ecotoxicol Environ Saf 157:9–20

    Article  CAS  PubMed  Google Scholar 

  • Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML, Gandolfi C, Casati E, Previtali F, Gerbino R, PierottiCei F, Borin S, Sorlini C, Zocchi G, Daffonchio D (2015) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol 17:316–331

    Article  PubMed  Google Scholar 

  • Rovira AD (1969) Plant root exudates. Bot Rev 35(1):35–57

    Article  CAS  Google Scholar 

  • Ryu CM, Hu CH, Locy RD, Kloepper JW (2005) Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268:285. https://doi.org/10.1007/s11104-004-0301-9

    Article  CAS  Google Scholar 

  • Sarkar J, Chakraborty B, Chakraborty U (2018a) Plant growth promoting rhizobacteria protect wheat plants against temperature stress through antioxidant signalling and reducing chloroplast and membrane injury. J Plant Growth Regul 1–17. https://doi.org/10.1007/s00344-018-9789-8

    Article  CAS  Google Scholar 

  • Sarkar A, Ghosh PK, Pramanik K, Mitra S, Soren T, Pandey S, Mondal MH, Maiti TK (2018b) A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res Microbiol 169:20–32

    Article  CAS  PubMed  Google Scholar 

  • Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88(6):1386–1394

    Article  PubMed  Google Scholar 

  • Schuhegger RM, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, van Breusegem F, Eberl L, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918

    Article  CAS  PubMed  Google Scholar 

  • Selvakumar G, Panneerselvam P, Ganeshamurthy AN (2012) Bacterial mediated alleviation of abiotic stress in crops. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin, pp 205–224

    Chapter  Google Scholar 

  • Sgherri CLM, Maffei M, Navari-Izzo F (2000) Antioxidative enzymes in wheat subjected to increasing water deficit and rewatering. J Plant Physiol 157:273–279

    Article  CAS  Google Scholar 

  • Shah DA, Sen S, Shalini A, Ghosh D, Grover M, Mohapatra S (2017) An auxin secreting Pseudomonas putida rhizobacterial strain that negatively impacts water-stress tolerance in Arabidopsis thaliana. Rhizosphere 3(1):16–19

    Article  Google Scholar 

  • Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158(3):243–248

    Article  CAS  PubMed  Google Scholar 

  • Sheikh HH, Hossain K, Halimi MS (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Biomed Res Int 2016: 6284547, 10 p. https://doi.org/10.1155/2016/6284547

    Article  CAS  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125(1):27–58

    Article  CAS  PubMed  Google Scholar 

  • Stintzi A, Browse J (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci USA 97:10625–10630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stotz HU, Pittendrigh BR, Kroymann J, Weniger K, Fritsche J, Bauke A, Mitchell-Olds T (2000) Induced plant defense responses against chewing insects. Ethylene signaling reduces resistance of Arabidopsis against Egyptian cotton worm but not diamondback moth. Plant Physiol 124:1007–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stringlis IA, Yu K, Feussner K, Jonge R, Bentum SV, Verk MCV, Berendsen RL, Bakker PAHM, Feussner I, Pieterse CMJ (2018) MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc Natl Acad Sci. 201722335. https://doi.org/10.1073/pnas.1722335115

    Article  CAS  Google Scholar 

  • Su F, Jacquard C, Villaume S, Michel J, Rabenoelina F, Christophe C, Barka EA, Dhondt-Cordelier S, Vaillant-Gaveau N (2015) Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana. Front Plant Sci 6:810. https://doi.org/10.3389/fpls.2015.00810

    Article  PubMed  PubMed Central  Google Scholar 

  • Takshak S, Agrawal SB (2014a) Effect of ultraviolet-B radiation on biomass production, lipid peroxidation, reactive oxygen species, and antioxidants in Withania somnifera. Biol Plant 58:328–334

    Article  CAS  Google Scholar 

  • Takshak S, Agrawal SB (2014b) Secondary metabolites and phenylpropanoid pathway enzymes as influenced under supplemental ultraviolet-B radiation in Withania somnifera Dunal, an indigenous medicinal plant. J Photochem Photobiol B 140:332–343

    Article  CAS  PubMed  Google Scholar 

  • Thomsen IK, Schjønning P, Jensen B, Kristensen K, Christensen BT (1999) Turnover of organic matter in differently textured soils: II. Microbial activity as influenced by soil water regimes. Geoderma 89(3–4):199–218

    Article  Google Scholar 

  • Timmusk S, Wagner EGH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant-Microbe Interact 12:951–959

    Article  CAS  PubMed  Google Scholar 

  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171. https://doi.org/10.1128/AEM.68.5.2161-2171.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah U, Ashraf M, Sher MS, Siddiqui AR, Piracha MA, Muhammad S (2016) Growth behavior of tomato (Solanum lycopersicum L.) under drought stress in the presence of silicon and plant growth promoting rhizobacteria. Soil Environ 35(1):65–75

    CAS  Google Scholar 

  • Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide-producing plant growth- promoting rhizobacteria under salinity condition. Pedosphere 21(2):214–222

    Article  CAS  Google Scholar 

  • Vardharajula S, Ali SZ, Grover M, Reddy G, Bandi V (2010) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6(1):1–14. https://doi.org/10.1080/17429145.2010.535178

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, Ali SKZ (2016a) Multifunctional Pseudomonas putida strain FBKV2 from arid rhizosphere soil and its growth promotional effects on maize under drought stress. Rhizosphere 1:4–13

    Article  Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, Ali SKZ (2016b) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Article  PubMed  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132(1):44–51. https://doi.org/10.1104/pp.102.019661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang KL-C, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14(Suppl):s131–s151. https://doi.org/10.1105/tpc.001768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Dodd IC, Belimov AA, Jiang F (2016) Rhizosphere bacteria containing 1-aminocyclopropane-1- carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. Funct Plant Biol 43:161–172. https://doi.org/10.1071/FP15200

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Yang A, Saleem AS, Shahid I, Muhammad A, Muhammad N, Ahmad ZZ, Sven-Erik J (2016) Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation. Funct Plant Biol 43:632–642

    Article  CAS  PubMed  Google Scholar 

  • Zerrouk IZ, Benchabane M, Khelifi L, Yokawa K, Ludwig-Muller J, Baluska F (2016) Pseudomonas strain isolated from date-palm rhizospheres improves root growth and promotes root formation in maize exposed to salt and aluminum stress. J Plant Physiol 191:111–119

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microbe Interact 21:737–744

    Article  PubMed  CAS  Google Scholar 

  • Zhou C, Ma Z, Zhu L, Xiao X, Xie Y, Zhu J, Wang J (2016) Rhizobacterial strain Bacillus megaterium BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance. Int J Mol Sci 17(6):976. https://doi.org/10.3390/ijms17060976

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author is grateful to the Principal of P.E.S’s RSN College for his support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pereira, F. (2019). Rhizobacteria as Bioprotectants Against Stress Conditions. In: Sayyed, R., Arora, N., Reddy, M. (eds) Plant Growth Promoting Rhizobacteria for Sustainable Stress Management . Microorganisms for Sustainability, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-13-6536-2_9

Download citation

Publish with us

Policies and ethics