Skip to main content

Rhizobacteria–Plant Interaction, Alleviation of Abiotic Stresses

  • Chapter
  • First Online:
Plant Growth Promoting Rhizobacteria for Sustainable Stress Management

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 12))

Abstract

At the present scenario, climate change became the potential threat to growers with rise in temperature, inconsistent rainfall, and salinization of agricultural land. However, the microbes more specifically plant growth-promoting rhizobacteria (PGPR) play a significant role to mitigate the abiotic stresses. Rhizobacteria act as bioprotectants against drought, salt, heavy metals, high temperature, and cold stress. During drought condition, PGPR intensifies osmolytes (proline, glycine, betaine) and acts as an osmoprotectant. The drought-related enzyme ACC deaminases were regulated by the PGPR, which also regulates the stomatal physiology during the water deficit conditions. The salt stress in plants was also a complex process to understand. During salt stress condition, PGPR acts as an activator of antioxidant enzymes and polyamines and also acts as a modulator of abscisic acid. Inoculation of PGPR affects the expression of 14 genes (four upregulated and two downregulated) related to salt stress. The effect of heavy metal toxicity is also found in plants, which is due to the improper fertilizer applications, industrial waste, sludge, etc. The main site for accumulation of heavy metals is the root nodule. At present many PGPR sp., i.e., Bacillus sp., Pseudomonas sp., Azotobacter sp., Enterobacter sp., and Rhizobium sp., were proposed to speed up the phytoremediation process of nodules. Bacterial metallothioneins (MTs) of the family Bmt, a family with low-molecular proteins, play a significant role to absorb heavy metals. High temperature also acts as a constraint of normal plant root nodulation and rhizobial growth. The strains of PGPRs evolve during the heat stress period against the raised temperature with the production of extra LPS, EPS, and special class of proteins, i.e., heat shock proteins (HSPs). Cold tolerance can also be derived by PGPR as the accumulation of more carbohydrate, regulation of stress-related genes for osmolytes expression, and enhancement of specific protein synthesis, which helps plant to fight against cold stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandre A, Oliveira S (2011) Most heat-tolerant rhizobia show high induction of major chaperone genes upon stress. FEMS Microbiol Ecol 75:28–36

    Article  CAS  PubMed  Google Scholar 

  • Ali SZ, Sandhya V, Grover M, Linga VR, Bandi V (2011) Effect of inoculation with a thermotolerant plant growth promoting Pseudomonas putida strain AKMP7 on the growth of wheat (Triticum spp.) under heat stress. J Plant Interact 6(4):239–246

    Article  CAS  Google Scholar 

  • Armada E, Azcón R, López-Castillo OM, Calvo-Polanco M, Ruiz-Lozano JM (2015) Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions. Plant Physiol Biochem 90:64–74

    Article  CAS  PubMed  Google Scholar 

  • Barriuso J, Solano BR, Lucas JA, Lobo AP, Villaraco AG, FJG M˜e (2008) In: Ahmad I, Pichtel J, Hayat S (eds) Ecology genetic diversity and screening strategies of plant growth promoting Rhizobacteria (PGPR). WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–17

    Google Scholar 

  • Bota J, Medrano H, Flexas J (2004) Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytol 162(3):671–681

    Article  CAS  PubMed  Google Scholar 

  • Canarini A, Dijkstra FA (2015) Dry-rewetting cycles regulate wheat carbon rhizodeposition, stabilization and nitrogen cycling. Soil Biol Biochem 81:195–203. https://doi.org/10.1016/j.soilbio.2014.11.014

    Article  CAS  Google Scholar 

  • Craig EA, Gambill BD, Nelson RJ (1993) Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol Mol Biol Rev 57(2):402–414

    CAS  Google Scholar 

  • Egamberdiyeva D, Islam KR (2008) In: Ahmad I, Pichtel J, Hayat S (eds) Salt tolerant rhizobacteria: plant growth promoting traits and physiological characterization within the ecologically stressed environment. Wiley-VCH, Weinheim, pp 257–281Plant-bacteria interactions: strategies and techniques to promote plant growth

    Google Scholar 

  • Ehsanpour AA, Zarei S, Abbaspour J (2012) The role of overexpression of p5cs gene on proline, catalase, ascorbate peroxidase activity and lipid peroxidation of transgenic tobacco (Nicotiana tabacum L.) plant under in vitro drought stress. J Cell Mol Res 4:43–49

    Google Scholar 

  • Eida AA, Ziegler M, Lafi FF, Michell CT, Voolstra CR, Hirt H, Saad MM (2018) Desert plant bacteria reveal host influence and beneficial plant growth properties. PLoS One 13(12):e0208223

    Article  PubMed  PubMed Central  Google Scholar 

  • Erdogan U, Cakmakci R, Varmazyarı A, Turan M, Erdogan Y, Kıtır N (2016) Role of inoculation with multi-trait rhizobacteria on strawberries under water deficit stress. Zemdirbyste-Agriculture 103(1):67–76

    Article  Google Scholar 

  • Fedoroff NV, Battisti DS, Beachy RN, Cooper PJ, Fischhoff DA, Hodges CN, Knauf VC, Lobell D, Mazur BJ, Molden D (2010) Radically rethinking agriculture for the 21st century. Science 327:833–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29(1):185–212

    Article  Google Scholar 

  • Gill SS, Tajrishi M, Madan M, Tuteja N (2013) A DESD-box helicase functions in salinity stress tolerance by improving photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. PB1). Plant Mol Biol 82(1-2):1–22

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16:574–581

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa PM (2013) Sodium (Na+) homeostasis and salt tolerance of plants. Environ Exp Bot 92:19–31

    Article  CAS  Google Scholar 

  • Huckle JW, Morby AP, Turner JS, Robinson NJ (1993) Mol Microbiol 7:177–187

    Article  CAS  PubMed  Google Scholar 

  • Keskin BC, Sarikaya AT, Yuksel B, Memon AR (2010) Abscisic acid regulated gene expression in bread wheat. Aust J Crop Sci 4:617–625

    Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg BJ, Malfanova N, Kamilova F, Berg G (2013) Plant growth promotion by microbes. Mol Microb Ecol Rhizosphere 1(2):559–573

    Article  Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10

    Article  CAS  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  CAS  PubMed  Google Scholar 

  • Meena H, Ahmed MA, Prakash P (2015) Amelioration of heat stress in wheat, Triticum aestivum by PGPR (Pseudomonas aeruginosa strain 2CpS1). Biosci Biotechno Res 8(2):171–174

    Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167(3):645–666

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Munns DN, Keyser HH, Fogle VW, Hohenberg JS, Righetti TL, Lauter DL, Zaruog MG, Clarkin KL, Whitacre KW (1979) Tolerance of soil acidity in the symbiosis of mung bean with rhizobia. Agron J 71:256–260

    Article  CAS  Google Scholar 

  • Murthy S, Bali G, Sarangi SK (2011) Effect of lead on metallothionein concentration in lead-resistant bacteria Bacillus cereus isolated from industrial effluent. Afr J Biotechnol 10(71):15966–15972

    Article  CAS  Google Scholar 

  • Nandal K, Sehrawat AR, Yadav AS, Vashishat RK, Boora KS (2005) High temperature-induced changes in exo-polysaccharides, lipopolysaccharides and protein profile of heat-resistant mutants of Rhizobium sp. (Cajanus). Microbiol Res 160:367–373

    Article  CAS  PubMed  Google Scholar 

  • Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9. https://doi.org/10.1016/j.plaphy.2013.01.020

    Article  CAS  PubMed  Google Scholar 

  • Niu X, Song L, Xiao Y, Ge W (2018) Drought-tolerant plant growth-promoting Rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front Microbiol 8:2580

    Article  PubMed  PubMed Central  Google Scholar 

  • Parry MA, Andralojc PJ, Khan S, Lea PJ, Keys AJ (2002) Rubisco activity: effects of drought stress. Ann Bot 89(7):833–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passariello B, Giuliano V, Quaresima S, Barbaro M, Caroli S, Forte G, Iavicoli I (2002) Evaluation of the environmental contamination at an abandoned mining site. Microchem J 73(1–2):245–250

    Article  CAS  Google Scholar 

  • Qadir M, Quillerou E, Nangia V (2014) Economics of salt-induced land degradation and restoration. Nat Res For 38:282–295

    Google Scholar 

  • Rahnama A, James RA, Poustini K, Munns R (2010) Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct Plant Biol 37(3):255–263

    Article  Google Scholar 

  • Rahneshan Z, Nasibi F, Moghadam AA (2018) Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J Plant Interact 13(1):73–82

    Article  CAS  Google Scholar 

  • Raynaud X, Nunan N (2014) Spatial ecology of bacteria at the microscale in the soil. PLoS One 9(1):e87217

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruelland E, Vaultier MN, Zachowski A, Hurry V (2009) Chapter 2: Cold signaling and cold acclimation in plants. Adv Bot Res 49:35–150

    Article  CAS  Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62:21–30

    Article  CAS  Google Scholar 

  • Saxena SC, Kaur H, Verma P, Petla BP, Andugula VR, Majee M (2013) Osmoprotectants: potential for crop improvement under adverse conditions. In: Plant acclimation to environmental stress. Springer, New York, pp 197–232

    Chapter  Google Scholar 

  • Sheng XF (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    Article  CAS  Google Scholar 

  • Shu S, Guo SR, Yuan LY (2012) A review: polyamines and photosynthesis. In: Advances in photosynthesis-fundamental aspects. In Tech, Rijeka

    Google Scholar 

  • Smith DL, Gravel V, Yergeau E (2017) Editorial: signaling in the phytomicrobiome. Front Plant Sci 8:611. https://doi.org/10.3389/fpls.2017.00611

    Article  PubMed  PubMed Central  Google Scholar 

  • Song H, Zhao R, Fan P, Wang X, Chen X, Li Y (2009) Overexpression of AtHsp90.2, AtHsp90.5 and AtHsp90.7 in Arabidopsis thaliana enhances plant sensitivity to salt and drought stresses. Planta 229(4):955–964

    Article  CAS  PubMed  Google Scholar 

  • Sriprang R, Hayashi M, Yamashita M, Ono H, Saeki K, Murooka Y (2002) A novel bioremediation system for heavy metals using the symbiosis between leguminous plant and genetically engineered rhizobia. J Biotechnol 99:279–293

    Article  CAS  PubMed  Google Scholar 

  • Tahir MA, Aziz T, Farooq M, Sarwar G (2012) Silicon-induced changes in growth, ionic composition, water relations, chlorophyll contents and membrane permeability in two salt-stressed wheat genotypes. Arch Agron Soil Sci 58(3):247–256

    Article  CAS  Google Scholar 

  • Theocharis A, Bordiec S, Fernandez O, Paquis S, Dhondt-Cordelier S, Baillieul F (2011) Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures. Mol Plant-Microbe Interact 25:241–249

    Article  Google Scholar 

  • Theocharis A, Clément C, Barka EA (2012) Physiological and molecular changes in plants grown at low temperatures. Planta 235:1091–1105

    Article  CAS  PubMed  Google Scholar 

  • Vasilica STAN, Gament E, Cornea CP, Voaideş C, Mirela DUŞA, Plopeanu G (2011) Effects of heavy metal from polluted soils on the Rhizobium diversity. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39(1):88–95

    Article  Google Scholar 

  • Yuwono T, Handayani D, Soedarsono J (2005) The role of osmotolerant rhizobacteria in rice growth under different drought conditions. Aus J Agric Res 56(7):715–721

    Article  Google Scholar 

  • Zahir ZA, Munir A, Asghar HN, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18:958–963

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R.K., Masurkar, P., Pandey, S.K., Kumar, S. (2019). Rhizobacteria–Plant Interaction, Alleviation of Abiotic Stresses. In: Sayyed, R., Arora, N., Reddy, M. (eds) Plant Growth Promoting Rhizobacteria for Sustainable Stress Management . Microorganisms for Sustainability, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-13-6536-2_16

Download citation

Publish with us

Policies and ethics