Skip to main content

Comprehensive Neutronics Simulations

  • Chapter
  • First Online:
Neutronics of Advanced Nuclear Systems
  • 720 Accesses

Abstract

Comprehensive neutronics simulations are coupled simulations of neutron and multiple neutron-related physical effects for the entire space and life cycle of nuclear systems. The key goal of comprehensive neutronics simulations is to solve neutron transport problems characterized by strong anisotropy, which exist in the whole-life design and safety operations of advanced nuclear systems. In this chapter, the framework of comprehensive simulation systems is presented. Then, the modeling, calculation, and visual analysis are discussed. Finally, several typical simulation systems are briefly introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu YC (2017) Fusion neutronics. Springer Nature Singapore Pte. Ltd

    Google Scholar 

  2. Loughlin MJ, Polunovskiy EI, Zheng SL et al (2011) ITER approach to interfacing CAD systems with the nuclear analysis program MCNP. Nucl Technol 175(1):271–275

    Article  Google Scholar 

  3. Wu YC (2009) CAD-based interface programs for fusion neutron transport simulation. Fusion Eng Des 84(7–11):1987–1992

    Article  Google Scholar 

  4. Yu SP, Cheng MY, Song J et al (2015) Convex-based void filling method for CAD-based Monte Carlo geometry modeling. Annu Nucl Energy 85:380–385

    Article  Google Scholar 

  5. Long PC, Zou J, Huang SQ et al (2010) Development and application of SN auto-modeling tool SNAM 2.1. Fusion Eng Des 85(7–9):1113–1116

    Google Scholar 

  6. Gan Q, Wu B, Yu SP et al (2016) CAD-based hierarchical geometry conversion method for modeling of fission reactor cores. Ann Nucl Energy 94:369–375

    Article  Google Scholar 

  7. Zerkak O, Kozlowski T, Gajev I (2015) Review of multi-physics temporal coupling methods for analysis of nuclear reactors. Ann Nucl Energy 84:225–233

    Article  Google Scholar 

  8. Knoll DA, Keyes DE (2004) Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J Comput Phys 193(2):357–397

    Article  MathSciNet  Google Scholar 

  9. Long PC, Zeng Q, He T et al (2011) Development of a geometry-coupled visual analysis system for MCNP. Prog Nucl Sci Technol 2:280–283

    Article  Google Scholar 

  10. Li B, Yang Q, Chang B et al (2016) Preliminary analysis of radiation characteristic at upper section of accelerator driven subcritical system. Ann Nucl Energy 90:410–416

    Article  Google Scholar 

  11. Yang ZH, Tao H, Hu LQ et al (2015) Development of high-immersive simulation system for designing maintenance strategy and its application to CLEAR-I. Ann Nucl Energy 83:309–315

    Article  Google Scholar 

  12. Wu YC (2018) Multi-functional neutronics calculation methodology and program for nuclear design and radiation safety evaluation. Fusion Sci Technol 74(4):321–329

    Article  Google Scholar 

  13. Wu YC, Song J, Zheng HQ et al (2015) CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC. Ann Nucl Energy 82:161–168

    Article  Google Scholar 

  14. http://www.supermc.cn

  15. Wang GZ, Xiong J, Long PC et al (2011) Progress and applications of MCAM: Monte Carlo automatic modeling program for particle transport simulation. Prog Nucl Energy 2:821–825

    Google Scholar 

  16. Hu HM, Wu YC, Chen ML et al (2007) Benchmarking of SNAM with the ITER 3D model. Fusion Eng Des 82(15–24):2867–2871

    Article  Google Scholar 

  17. Zhang JJ, Hu LQ, Zeng Q, et al (2011) Development and application of MC-SN coupled auto-modeling tool RCAM1.0. Fusion Eng Des 86(9–11):2783–2786

    Google Scholar 

  18. Cheng MY, Huang SQ, Li J et al (2011) Progress of HUMOP: human automatic modeling program. Trans Am Nucl Soc 104:648–649

    Google Scholar 

  19. Luo YT, Long PC, Wu GY, et al (2010) SVIP-N 1.0: an integrated visualization platform for neutronics analysis. Fusion Eng Des 85(7–9):1527–1530

    Google Scholar 

  20. Wu YC, He T, Hu LQ et al (2015) Development of virtual reality-based simulation system for nuclear and radiation safety. At Energy Sci Technol 29:77–85

    Google Scholar 

  21. Zeng Q, Lu L, Ding AP et al (2006) Update of ITER 3D basic neutronics model with MCAM. Fusion Eng Des 81(23–24):2773–2778

    Article  Google Scholar 

  22. Zeng Q, Wang GZ, Dang TQ et al (2012) Use of MCAM in creating 3D neutronics model for ITER building. Fusion Eng Des 87:1273–1276

    Article  Google Scholar 

  23. Ying DC, Zeng Q, Qiu YF et al (2011) Assessment of radiation maps during activated divertor moving in the ITER building. Fusion Eng Des 86(9–11):2087–2091

    Article  Google Scholar 

  24. Dang TQ, Ying DC, Yang Q et al (2012) First Neutronics analysis for ITER bio-shield equatorial port plug. Fusion Eng Des 87:1447–1452

    Article  Google Scholar 

  25. Yang Q, Dang TQ, Ying DC et al (2012) Activation analysis of coolant water in ITER blanket and divertor. Fusion Eng Des 87(7–8):1310–1314

    Article  Google Scholar 

  26. Yu SP, Yang Q, Chen C, et al. Shielding design for activated first wall transferring in ITER hot cell building. J Fusion Energy 34(4):887–894

    Google Scholar 

  27. http://www.casl.gov

  28. Stimpson S, Powers J, Clarno K et al (2018) Pellet-clad mechanical interaction screening using VERA applied to watts bar unit 1, cycles 1–3. Nucl Eng Des 327:172–186

    Article  Google Scholar 

  29. (2017) Overview of the NURESAFE European project. Nucl Eng Des 321:1–7

    Google Scholar 

  30. Chanaron B, Ahnert C, Crouzet N et al (2015) Advanced multi-physics simulation for reactor safety in the framework of the NURESAFE project. Ann Nucl Energy 84:166–177

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, Y. (2019). Comprehensive Neutronics Simulations. In: Neutronics of Advanced Nuclear Systems. Springer, Singapore. https://doi.org/10.1007/978-981-13-6520-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6520-1_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6519-5

  • Online ISBN: 978-981-13-6520-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics