Skip to main content

The Fractional Fourier Multipliers on Lipschitz Curves and Surfaces

  • Chapter
  • First Online:
Singular Integrals and Fourier Theory on Lipschitz Boundaries
  • 478 Accesses

Abstract

The main contents of this chapter are based on some new developments on the holomorphic Fourier multipliers which are obtained by the two authors in recent years, see the author’s paper joint with Leong [1] and the joint work [2]. In the above chapters, we state the convolution singular integral operators and the related bounded holomorphic Fourier multipliers on the finite and infinite Lipschitz curves and surfaces. Let \(S^{c}_{\mu ,\pm }\) and \(S^{c}_{\mu }\) be the regions defined in Sect. 1.1. The multiplier b belongs to the class \(H^{\infty }(S^{c}_{\mu ,\pm })\) defined as

$$H^{\infty }(S^{c}_{\mu })=\Big \{b:\ S^{c}_{\mu }\rightarrow \mathbb {C}:\ b_{\pm }=b\chi _{\{z\in \mathbb {C}:\ \pm \text {Re}z>0\}} \in H^{\infty }(S^{c}_{\mu ,\pm })\Big \},$$

where \(H^{\infty }(S^{c}_{\mu ,\pm })\) is defined as the set of all holomorphic function b satisfying \(|b(z)|\leqslant C_{\nu }\) in any \(S^{c}_{\nu ,\pm },\ 0<\nu <\mu \).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li P, Leong I, Qian T. A class of Fourier multipliers on starlike Lipschitz surfaces. J Funct Anal. 2011;261:1415–45.

    Article  MathSciNet  Google Scholar 

  2. Li P, Qian T. Unbounded holomorphic Fourier multipliers on starlike Lipschitz surfaces in the quaternionic space and applications. Nonlinear Anal TMA. 2014;95:436–49.

    Article  Google Scholar 

  3. Eelobde D. Clifford analysis on the hyperbolic unit ball. PhD-thesis, Ghent, Belgium; 2005.

    Google Scholar 

  4. Eelbode D, Sommen F. The photogenic Cauchy transform. J Geom Phys. 2005;54:339–54.

    Article  MathSciNet  Google Scholar 

  5. Baernstein II A. Ahlfors and conformal invariants. Ann Acad Sci Fenn Ser Math. 1988;31:289–312.

    Google Scholar 

  6. Qian T. Transference between infinite Lipschitz graphs and periodic Lipschitz graphs. In: Proceeding of the center for mathematics and its applications, ANU, vol. 33; 1994. p. 189–94.

    Google Scholar 

  7. Qian T. Singular integrals with monogenic kernels on the m-torus and their Lipschitz perturbations. In: Ryan J, editor. Clifford algebras in analysis and related topics. Studies in advanced mathematics series. Boca Raton: CRC Press; 1996. p. 94–108.

    Google Scholar 

  8. Delangle R, Sommen F, Soucek V. Clifford algebras and spinor valued functions: a function theory for Dirac operator. Dordrecht: Kluwer; 1992.

    Book  Google Scholar 

  9. Kenig C. Weighted \(H^{p}\) spaces on Lipschitz domains. Am J Math. 1980;102:129–63.

    Google Scholar 

  10. Jerison D, Kenig C. Hardy spaces, \(A_{\infty }\), a singular integrals on chord-arc domains. Math Scand. 1982;50:221–47.

    Google Scholar 

  11. Mitrea M. Clifford wavelets, singular integrals, and Hardy spaces. Lecture notes in mathematics, vol. 1575. Berlin: Springer; 1994.

    Google Scholar 

  12. Li C, McIntosh A, Semmes S. Convolution singular integrals on Lipschitz surfaces. J Am Math Soc. 1992;5:455–81.

    Article  MathSciNet  Google Scholar 

  13. Li C, McIntosh A, Qian T. Clifford algebras, Fourier transforms, and singular convolution operators on Lipschitz surfaces. Rev Mat Iberoam. 1994;10:665–721.

    Article  MathSciNet  Google Scholar 

  14. Qian T. Singular integrals on star-shaped Lipschitz surfaces in the quaternionic spaces. Math Ann. 1998;310:601–30.

    Article  MathSciNet  Google Scholar 

  15. Qian T. Singular integrals with holomorphic kernels and \(H^{\infty }-\)Fourier multipliers on star-shaped Lipschitz curves. Stud Math. 1997;123:195–216.

    Google Scholar 

  16. Gaudry G, Qian T, Wang S. Boundedness of singular integral operators with holomorphic kernels on star-shaped Lipschitz curves. Colloq Math. 1996;70:133–50.

    Article  MathSciNet  Google Scholar 

  17. Coifman R, Meyer Y. Fourier analysis of multilinear convolutions, Calderón’s theorem, and analysis on Lipschitz curves. Lecture notes in mathematica, vol. 779. Berlin: Springer; 1980. p. 104–22.

    Google Scholar 

  18. McIntosh A, Qian T. Convolution singular integral operators on Lipschitz curves. Lecture notes in mathematics, vol. 1494. Berlin: Springer; 1991. p. 142–62.

    Google Scholar 

  19. Verchota G. Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J Funct Anal. 1984;59:572–611.

    Article  MathSciNet  Google Scholar 

  20. Khavinson D. A remark on a paper of T. Qian. Complex Var. 1997;32:341–3.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd. and Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qian, T., Li, P. (2019). The Fractional Fourier Multipliers on Lipschitz Curves and Surfaces. In: Singular Integrals and Fourier Theory on Lipschitz Boundaries. Springer, Singapore. https://doi.org/10.1007/978-981-13-6500-3_7

Download citation

Publish with us

Policies and ethics