Convolution Singular Integral Operators on Lipschitz Surfaces



As the high-dimensional generalization of the boundedness of singular integrals on Lipschitz curves, the \(L^{p}(\Sigma )\)-boundedness of the Cauchy-type integral operators on the Lipschitz surfaces \(\Sigma \) is a meaningful question. The increase of the dimensions means that we need to apply a new method to solve the above question. In 1994, C. Li, A. McIntosh and S. Semmes embedded \(\mathbb {R}^{n+1}\) into Clifford algebra \(\mathbb {R}_{(n)}\) and considered the class of holomorphic functions on the sectors \(S_{w,\pm }\), see [1]. They proved that if the function \(\phi \) belongs to \(K(S_{w,\pm })\), then the singular integral operator \(T_{\phi }\) with the kernel \(\phi \) on Lipschitz surface is bounded on \(L^{p}(\Sigma )\).


  1. 1.
    Li C, McIntosh A, Semmes S. Convolution singular integrals on Lipschitz surfaces. J Am Math Soc. 1992;5:455–81.Google Scholar
  2. 2.
    Gaudry G, Long R, Qian T. A martingale proof of \(L^{2}\)-boundedness of Clifford-valued singular integrals. Ann Math Pura Appl. 1993;165:369–94.Google Scholar
  3. 3.
    Coifman R, Jones P, Semmes S. Two elementary proofs of the \(L^{2}\) boundedness of Cauchy integrals on Lipschitz curves. J Am Math Soc. 1989;2:553–64.Google Scholar
  4. 4.
    Cowling M, Gaudry G, Qian T. A note on martingales with respect to complex measures. In: Miniconference on operators in analysis, Macquare University, September 1989, Proceedings of the center for mathematical analysis, Australian National University, vol. 24; 1989. p. 10–27.Google Scholar
  5. 5.
    Edwards R, Gaudry G. Littlewood-Paley and multiplier theory. Berlin: Springer; 1977.Google Scholar
  6. 6.
    Garsla A. Martingale inequalities. New York: W. A. Benjamin Inc; 1973.Google Scholar
  7. 7.
    David G, Journé J-L. A boundedness criterion for generalized Calderón-Zygmund operators. Ann Math. 1984;120:371–97.Google Scholar
  8. 8.
    David G, Journé J-L, Semmes S. Opérateurs de Caldéron-Zygmund sur les espaces de nature homogène. Preprint.Google Scholar
  9. 9.
    Peetre J. On convolution operators leaving \(L^{p,\lambda }\) invariant. Ann Mat Pura Appl. 1966;72:295–304.Google Scholar
  10. 10.
    Spanne S. Sur l’interpolation entre les espaces \(\mathfrak{L}^{p,\phi }_{k}\). Ann Sc Norm Sup Pisa. 1964;20:625–48.Google Scholar
  11. 11.
    Stein E-M. Singular integrals, harmonic functions, and differentiability properties of functions of several variables. In: Proceedings of symposium in pure mathematics, vol. 10; 1967. p. 316–35.Google Scholar
  12. 12.
    Mitrea M. Clifford wavelets, singular integrals, and hardy spaces. Lecture notes in mathematics, vol. 1575. Berlin: Springer; 1994.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press 2019

Authors and Affiliations

  1. 1.Macau Institute of Systems EngineeringMacau University of Science and TechnologyMacaoChina
  2. 2.School of Mathematics and StatisticsQingdao UniversityQingdaoChina

Personalised recommendations