Singular Integrals and Fourier Multipliers on Infinite Lipschitz Curves



The main contents of this chapter are closely related with harmonic analysis and operator theory. Let \(\gamma \) denote a Lipschitz graph on the complex plane \(\mathbb C\).


  1. 1.
    McIntosh A, Qian T. Convolution singular integral operators on Lipschitz curves, in Lecture Notes in Math. 1494, Springer, 1991;142–162.Google Scholar
  2. 2.
    McIntosh A, Qian T, Fourier theory on Lipschitz curves. Minicoference on Harmonic Analysis, Proceedings of the Center for Mathematical Analysis. ANU, Canberra;1987 (15):157–166.Google Scholar
  3. 3.
    McIntosh A, Qian T. \(L^{p}\) Fourier multipliers on Lipschitz curves. Center for Mathematical Analysis Research Report, R36-88, ANU, Canberra;1988.Google Scholar
  4. 4.
    McIntosh A, Operators which have an \(H_{\infty }-\)functional calculus. Miniconference on Operator Theory and Partial Differential Equations. In: Proceedings of the Center for Mathematical Analysis, ANU. Canberra. 14:1986.Google Scholar
  5. 5.
    Kenig C. Weighted \(H^{p}\) spaces on Lipschitz domains. Amer. J. Math. 1980;102:129–63.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Coifman R, Meyer Y. Au-delá des opérateurs pesudo-différentiels. Astérisque, 57, Societe Mathématique de France, 1978.Google Scholar
  7. 7.
    McIntosh A, Qian T. Fourier multipliers on Lipschitz curves. Trans. Amer. Math. Soc. 1992; p. 157–176.Google Scholar
  8. 8.
    McIntosh A, Qian T. A note on singular integrals with holomorphic kernels. Approx. Theory Appl. 1990;6:40–57.MathSciNetzbMATHGoogle Scholar
  9. 9.
    Calderón CP. Cauchy integrals on Lipschitz curves and related operators. Proc. Nat. Acad. Sc. USA. 1977;74:1324–7.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Coifman R, McIntosh A, Meyer Y. L’integral de Cauchy définit un opérateur borné sur \(L^{2}\) pour les courbes Lipschitziennes. Ann. Math. 1982;116:361–87.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Coifman R, Meyer Y. Fourier analysis of multilinear convolutions, Calderón’s theorem, and analysis on Lipschitz curves. Lecture Notes in Mathematica, 779, 104–122, Springer, Berlin, 1980.Google Scholar
  12. 12.
    Jones P., Semmes S. An elementary proof of the \(L^{2}\) boundedness of Cauchy integrals on Lipschitz curves, preprint.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press 2019

Authors and Affiliations

  1. 1.Macau Institute of Systems EngineeringMacau University of Science and TechnologyMacaoChina
  2. 2.School of Mathematics and StatisticsQingdao UniversityQingdaoChina

Personalised recommendations