Skip to main content

A Carboxylesterase E2-Based Biosensor to Simultaneously Remediate and Detect Mercury Ions

  • Chapter
  • First Online:
  • 235 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Heavy metal pollution has already become a big public concern, which results from the development of industry as well as the expansion of population.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Biondo R, da Silva FA, Vicente EJ, Souza Sarkis JE, Schenberg ACG (2012) Synthetic phytochelatin surface display in Cupriavidus metallidurans CH34 for enhanced metals bioremediation. Environ Sci Technol 46:8325–8332

    Article  Google Scholar 

  • Bulgariu D, Bulgariu L (2012) Equilibrium and kinetics studies of heavy metal ions biosorption on green algae waste biomass. Bioresour Technol 103:489–493

    Article  Google Scholar 

  • Chang JS, Hong J (1994) Biosorption of mercury by the inactivated cells of Pseudomonas aeruginosa PU21 (Rip64). Biotechnol Bioeng 44:999–1006

    Article  Google Scholar 

  • Cheng S (2003) Heavy metal pollution in China: origin, pattern and control. Environ Sci Pollut Res 10:192–198

    Article  Google Scholar 

  • Chouteau C, Dzyadevych S, Durrieu C, Chovelon J-M (2005) A bi-enzymatic whole cell conductometric biosensor for heavy metal ions and pesticides detection in water samples. Biosens Bioelectron 21:273–281

    Article  Google Scholar 

  • Das SK, Das AR, Guha AK (2007) A study on the adsorption mechanism of mercury on Aspergillus versicolor biomass. Environ Sci Technol 41:8281–8287

    Article  Google Scholar 

  • Dunagan SC, Gilmore MS, Varekamp JC (2007) Effects of mercury on visible/near-infrared reflectance spectra of mustard spinach plants (Brassica rapa P.). Environ Pollut 148:301–311

    Article  Google Scholar 

  • Harada M (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25:1–24

    Article  Google Scholar 

  • Houston MC (2011) Role of mercury toxicity in hypertension, cardiovascular disease, and stroke. J Clin Hypertens 13:621–627

    Article  Google Scholar 

  • Hu Y-H, Liu C-S, Hou J-H, Sun L (2009) Identification, characterization, and molecular application of a virulence-associated autotransporter from a pathogenic Pseudomonas fluorescens strain. Appl Environ Microbiol 75:4333–4340

    Article  Google Scholar 

  • Iqbal MZ, Shafiq M, Athar M (2014) Phytotoxic effects of mercury on seed germination and seedling growth of Albizia lebbeck (L.) Benth. (Leguminosae). Adv Environ Res 3:207–216

    Article  Google Scholar 

  • Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  Google Scholar 

  • Jiang G-B, Shi J-B, Feng X-B (2006) Mercury pollution in China. ACS Publications

    Google Scholar 

  • Jurng J, Lee TG, Lee GW, Lee S-J, Kim BH, Seier J (2002) Mercury removal from incineration flue gas by organic and inorganic adsorbents. Chemosphere 47:907–913

    Article  Google Scholar 

  • Lee SY, Choi JH, Xu Z (2003) Microbial cell-surface display. Trends Biotechnol 21:45–52

    Article  Google Scholar 

  • Liu R, Yang C, Xu Y, Xu P, Jiang H, Qiao C (2013) Development of a whole-cell biocatalyst/biosensor by display of multiple heterologous proteins on the Escherichia coli cell surface for the detoxification and detection of organophosphates. J Agric Food Chem 61:7810–7816

    Article  Google Scholar 

  • Lund B-O, Miller DM, Woods JS (1991) Mercury-induced H2O2 production and lipid peroxidation in vitro in rat kidney mitochondria. Biochem Pharmacol 42:S181–S187

    Article  Google Scholar 

  • Malitesta C, Guascito M (2005) Heavy metal determination by biosensors based on enzyme immobilised by electropolymerisation. Biosens Bioelectron 20:1643–1647

    Article  Google Scholar 

  • Moreno F, Garcia-Barrera T, Gomez-Ariza J (2010) Simultaneous analysis of mercury and selenium species including chiral forms of selenomethionine in human urine and serum by HPLC column-switching coupled to ICP-MS. Analyst 135:2700–2705

    Article  Google Scholar 

  • Mudhoo A, Garg VK, Wang S (2012) Removal of heavy metals by biosorption. Environ Chem Lett 10:109–117

    Article  Google Scholar 

  • Pesaresi A, Devescovi G, Lamba D, Venturi V, Degrassi G (2005) Isolation, characterization, and heterologous expression of a carboxylesterase of Pseudomonas aeruginosa PAO1. Curr Microbiol 50:102–109

    Article  Google Scholar 

  • Rodgers JS, Hocker JR, Hanas RJ, Nwosu EC, Hanas JS (2001) Mercuric ion inhibition of eukaryotic transcription factor binding to DNA1. Biochem Pharmacol 61:1543–1550

    Article  Google Scholar 

  • Saleem M, Brim H, Hussain S, Arshad M, Leigh M (2008) Perspectives on microbial cell surface display in bioremediation. Biotechnol Adv 26:151–161

    Article  Google Scholar 

  • Shafawi A, Ebdon L, Foulkes M, Stockwell P, Corns W (2000) Preliminary evaluation of adsorbent-based mercury removal systems for gas condensate. Anal Chim Acta 415:21–32

    Article  Google Scholar 

  • Sheng G-P, Xu J, Luo H-W, Li W-W, Li W-H, Yu H-Q, Xie Z, Wei S-Q, Hu F-C (2013) Thermodynamic analysis on the binding of heavy metals onto extracellular polymeric substances (EPS) of activated sludge. Water Res 47:607–614

    Article  Google Scholar 

  • Syshchyk O, Skryshevsky VA, Soldatkin OO, Soldatkin AP (2015) Enzyme biosensor systems based on porous silicon photoluminescence for detection of glucose, urea and heavy metals. Biosens Bioelectron 66:89–94

    Article  Google Scholar 

  • Vander Willigen C, Postaire O, Tournaire-Roux C, Boursiac Y, Maurel C (2006) Expression and inhibition of aquaporins in germinating Arabidopsis seeds. Plant Cell Physiol 47:1241–1250

    Article  Google Scholar 

  • Wei W, Liu X, Sun P, Wang X, Zhu H, Hong M, Mao Z-W, Zhao J (2014) Simple whole-cell biodetection and bioremediation of heavy metals based on an engineered lead-specific operon. Environ Sci Technol 48:3363–3371

    Article  Google Scholar 

  • Wu CH, Mulchandani A, Chen W (2008) Versatile microbial surface-display for environmental remediation and biofuels production. Trends Microbiol 16:181–188

    Article  Google Scholar 

  • Xu X, Wang J, Jiao K, Yang X (2009) Colorimetric detection of mercury ion (Hg2+) based on DNA oligonucleotides and unmodified gold nanoparticles sensing system with a tunable detection range. Biosens Bioelectron 24:3153–3158

    Article  Google Scholar 

  • Yavuz H, Denizli A, Güngüneş H, Safarikova M, Safarik I (2006) Biosorption of mercury on magnetically modified yeast cells. Sep Purif Technol 52:253–260

    Article  Google Scholar 

  • Yin K, Lv M, Wang Q, Wu Y, Liao C, Zhang W, Chen L (2016) Simultaneous bioremediation and biodetection of mercury ion through surface display of carboxylesterase E2 from Pseudomonas aeruginosa PA1. Water Res 103:383–390 (Reproduced with Permission. Copyright (2016) Elsevier)

    Google Scholar 

  • Yin K, Wang Q, Lv M, Chen L (2018) Microorganism remediation strategies towards heavy metals. Chem Eng J

    Google Scholar 

  • Yin K, Zhang W, Chen L (2014) Pyoverdine secreted by Pseudomonas aeruginosa as a biological recognition element for the fluorescent detection of furazolidone. Biosens Bioelectron 51:90–96 (Reproduced with Permission. Copyright (2014) Elsevier)

    Google Scholar 

  • Zalups RK (2000) Molecular interactions with mercury in the kidney. Pharmacol Rev 52:113–144

    Google Scholar 

  • Zhang W-B, Su Z-F, Chu X-F, Yang X-A (2010) Evaluation of a new electrolytic cold vapor generation system for mercury determination by AFS. Talanta 80:2106–2112

    Article  Google Scholar 

  • Zhang W, Yin K, Li B, Chen L (2013) A glutathione S-transferase from Proteus mirabilis involved in heavy metal resistance and its potential application in removal of Hg2+. J Hazard Mater 261:646–652

    Article  Google Scholar 

  • Zhao G, Li J, Ren X, Chen C, Wang X (2011) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45:10454–10462

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Yin .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yin, K. (2020). A Carboxylesterase E2-Based Biosensor to Simultaneously Remediate and Detect Mercury Ions. In: Design of Novel Biosensors for Optical Sensing and Their Applications in Environmental Analysis. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-6488-4_5

Download citation

Publish with us

Policies and ethics