Skip to main content

The Beneficial Influence of Microbial Interactions on Plant Diseases and Plant Growth Promoting Effect

  • Chapter
  • First Online:
Mycorrhizosphere and Pedogenesis

Abstract

Detailed knowledge on microbial systems and community are required to understand of microbial dynamism related microbial balance affecting ongoing struggle between beneficial microorganism and plant pathogens. As characteristic ancestry origin of mycorrhiza, molecular data shows a background lean to approximately 450 million years ago, which is symbiotic life style with plants. In contrast to many studies conducted on the influence of mycorrhizal growth on associated bacterial population, the mechanisms of interaction are still poorly understood. Intensive chemical usage in agriculture leads to environmental contamination and threats human health. These negative results enforce researchers for finding alternative ways to diminish of chemicals used in control of plant pathogens. In the frame of integrated pest management, sustainable production using microorganisms to maintain soil fertility and by environment friendly measurements such as biocontrol are important not only for effective and less hazardous effect on ecosystem but also provides low input in crop production. Beneficial microbial community is very dynamic and plays important role in balancing of characteristic property of soil that our knowledge on interaction between arbuscular mycorrhizal fungi (AMF) and plant receive much interest by scientific area since it has been considered as one of the effective control measurement and factor affecting re-mediation of pathogen and beneficial microorganism potential of soil. In this context, microbe-microbe interactions such as the mycorrhizal relationships with other soil micro biota in the rhizosphere like the rhizosphere bacteria and saprotrophic fungi are particularly important. A good understanding of the interactions between and rhizosphere bacteria or saprotrophic fungi in relation to plant growth and induction of plant resistance against diseases and nematodes have greatly increased. This chapter seeks to review the current research results on the effects of combined inoculation of the AMF and rhizosphere bacteria on plant growth, root colonization and induction of systemic resistance and compare it with those of AMF and saprotrophic fungi and to discuss their mechanisms of action and implications to biological control of plant diseases. In this review, we highlighted the positive influence of microbial interactions on plant diseases and plant growth promoting effect considering updated knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama, K., & Hayashi, H. (2006). Strigolactones: chemical signals for fungal symbiosis and parasitic weeds in plant roots. Annals of Botany, 97, 925–931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akiyama, K., Matsuzaki, K., & Hayashi, H. (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435, 824–827.

    Article  CAS  PubMed  Google Scholar 

  • Alejo-Iturvide, F., Márquez-Lucio, M. A., Morales-Ramírez, I., Vázquez-Garcidueñas, M. S., & Olalde-Portugal, V. (2008). Mycorrhizal protection of chili plants challenged with Phytophthora capsici. European Journal of Plant Pathology, 120, 13–20.

    Article  Google Scholar 

  • Amann, R. I., Ludwig, W., & Schleifer, K. H. (1995). Phylogenetic identification and in-situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59, 143–169.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ames, R. N., Reid, C. P. P., & Ingham, E. R. (1984). Rhizosphere bacterial population responses to root colonization by a vesicular-arbuscular mycorrhizal fungus. The New Phytologist, 96, 555–563.

    Article  Google Scholar 

  • Amora-Lazcano, E., Vazquez, M. M., & Azcon, R. (1998). Response of nitrogen-transforming microorganisms to arbuscular mycorrhizal fungi. Biology and Fertility of Soils, 27, 65–70.

    Article  CAS  Google Scholar 

  • Andrade, G., Mihara, K. L., Linderman, R. G., & Bethlenfalvay, G. J. (1998). Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant Soil, 202, 89–96.

    Article  CAS  Google Scholar 

  • Aranda, E., Sampedro, I., Díaz, R., García-Sánchez, M., Arriagada, C. A., Ocampo, J. A., & García-Romera, I. (2009). The effects of the arbuscular mycorrhizal fungus Glomus deserticola on growth of tomato plants grown in the presence of olive mill residues modified by treatment with saprophytic fungi. Symbiosis, 47, 133–140.

    Article  CAS  Google Scholar 

  • Arriagada, C., Sampedro, I., Garcia-Romera, I., & Ocampo, J. (2009). Improvement of growth of Eucalyptus globulus and soil biological parameters by amendment with sewage sludge and inoculation with arbuscular mycorrhizal and saprobe fungi. Science of the Total Environment, 407, 4799–4806.

    Article  CAS  PubMed  Google Scholar 

  • Artursson, V., Finlay, R. D., & Jansson, J. K. (2006). Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environmental Microbiology, 8, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Azcón-Aguilar, C., & Barea, J. M. (1996). Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – an overview of the mechanisms involved. Mycorrhiza, 6, 457–464.

    Article  Google Scholar 

  • Barea, J., Pozo, M., Azcon, R., & Aguilar, C. (2005). Microbial co-operation in the rhizosphere. Journal of Experimental Botany, 56, 1761–1778.

    Article  CAS  PubMed  Google Scholar 

  • Basu, M. J., & Santhaguru, K. (2009). Impact of Glomus fasciculatum and fluorescent pseudomonads on growth performance of Vigna radiata (L.) Wilczek challenged with phytopathogens. Journal of Plant Protection Research, 49, 190–194.

    Article  Google Scholar 

  • Baysal Ö, Silme RS (2018) The ecological role of biodiversity for crop protection. In: Dunea D (eds) Plant Competition in Cropping Systems. Intech, (in press).

    Google Scholar 

  • Baysal, Ö., Calışkan, M., & Yeşilova, Ö. (2008). An inhibitory effect of a new Bacillus subtilis strain (EU07) against Fusarium oxysporum f. sp. radicis lycopersici. Physiological and Molecular Plant Pathology, 73, 25–32.

    Article  Google Scholar 

  • Baysal, Ö., Lai, D., Xu, H. H., Siragusa, M., Calışkan, M., Carimi, F., Teixeira da Silva, J. A., & Tor, M. (2013). A proteomic approach provides new insights into the control of soil-borne plant pathogens by Bacillus species. PLoS One, 8, e53182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg, G. (2009). Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84, 11–18.

    Article  CAS  PubMed  Google Scholar 

  • Besserer, A., Bécard, G., Roux, C., & Séjalon-Delmas, N. (2009). Role of mitochondria in the response of arbuscular mycorrhizal fungi to strigolactones. Plant Signaling & Behavior, 4, 75–77.

    Article  CAS  Google Scholar 

  • Bianciotto, V., Bandi, C., Minerdi, D., Sironi, M., Tichy, H. V., & Bonfante, P. (1996a). An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Applied and Environmental Microbiology, 62, 3005–3010.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bianciotto, V., Minerdi, D., Perotto, S., & Bonfante, P. (1996b). Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria. Protoplasma, 193, 123–131.

    Article  Google Scholar 

  • Bianciotto, V., Lumini, E., Lanfranco, L., Minerdi, D., Bonfante, P., & Perotto, S. (2000). Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family gigasporaceae. Applied and Environmental Microbiology, 66, 4503–4509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianciotto, V., Andreotti, S., Balestrini, R., Bonfante, P., & Perotto, S. (2001). Extracellular polysaccharides are involved in the attachment of Azospirillum brasilense and Rhizobium leguminosarum to arbuscular mycorrhizal structures. European Journal of Histochemistry, 45, 39–49.

    Article  CAS  PubMed  Google Scholar 

  • Bødker, L., Kjøller, R., Kristensen, K., & Rosendahl, S. (2002). Interactions between indigenous arbuscular mycorrhizal fungi and Aphanomyces euteiches in field-grown pea. Mycorrhiza, 12, 7–12.

    Article  PubMed  CAS  Google Scholar 

  • Bolan, N. S. (1991). A critical-review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant and Soil, 134, 189–207.

    Article  CAS  Google Scholar 

  • Caron, M. (1989). Potential use of mycorrhizae in control of soilborne diseases. Canadian Journal of Plant Pathology, 11, 177–179.

    Article  Google Scholar 

  • Caron, M., Fortin, J. A., & Richard, C. (1986). Effect of inoculation sequence on the interaction between Glomus intraradices and Fusarium oxysporum f. sp. radices lycopersici in tomatoes. Canadian Journal of Plant Pathology, 8, 12–16.

    Article  Google Scholar 

  • Carpenter-Boggs, L., Loynachan, T. E., & Stahl, P. D. (1995). Spore germination of Gigaspora margarita stimulated by volatiles of soil-isolated actinomycetes. Soil Biology and Biochemistry, 27, 1445–1451.

    Article  CAS  Google Scholar 

  • Chandanie, W. A., Kubota, M., & Hyakumachi, M. (2006). Interactions between plant growth promoting fungi and arbuscular mycorrhizal fungus Glomus mosseae and induction of systemic resistance to anthracnose disease in cucumber. Plant and Soil, 286, 209–217.

    Article  CAS  Google Scholar 

  • Chin-A-Woeng, T. F. C., Bloemberg, G. V., Mulders, I. H. M., Dekkers, L. C., & Lugtenberg, B. J. J. (2000). Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Molecular Plant-Microbe Interactions, 13, 1340–1345.

    Article  CAS  PubMed  Google Scholar 

  • Citernesi, A. S., Fortuna, P., Filippi, C., Bagnoli, G., & Giovannetti, M. (1996). The occurrence of antagonistic bacteria in Glomus mosseae pot cultures. Agronomie, 16, 671–677.

    Article  Google Scholar 

  • Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71, 4951–4959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniels, B. A., & Trappe, J. M. (1980). Factors affecting spore germination of the vesicular-arbuscular mycorrhizal fungus, Glomus epigaeus. Mycologia, 72, 457–471.

    Article  CAS  Google Scholar 

  • Datnoff, L. E., Nemec, S., & Pernezny, K. (1995). Biological control of Fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biological Control, 5, 427–431.

    Article  Google Scholar 

  • De la Peña, E., Rodríguez-Echeverría, S., van der Putten, W. H., Freitas, H., & Moens, M. (2006). Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. The New Phytologist, 169, 829–840.

    Article  PubMed  Google Scholar 

  • Dehne, H. W. (1982). Interaction between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Pytopathology, 72, 1115–1119.

    Google Scholar 

  • Diedhiou, P. M., Hallmann, J., Oerke, E. C., & Dehne, H. W. (2003). Effects of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidogyne incognita infestation of tomato. Mycorrhiza, 13, 199–204.

    Article  CAS  PubMed  Google Scholar 

  • Drew, E. A., Murray, R. S., Smith, S. E., & Jakobsen, I. (2003). Beyond the rhizosphere: growth and function of arbuscular mycorrhizal external hyphae in sands of varying pore sizes. Plant Soil, 251, 105–114.

    Article  CAS  Google Scholar 

  • El-Tarabily, K. A., & Sivasithamparam, K. (2006). Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biology and Biochemistry, 38, 1505–1520.

    Article  CAS  Google Scholar 

  • Filion, M., St-Arnaud, M., & Fortin, J. A. (1999). Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. The New Phytologist, 141, 525–533.

    Article  Google Scholar 

  • Filippi, C., Bagnoli, G., Citernesi, A. S., & Giovannetti, M. (1998). Ultrastructural spatial distribution of bacteria associated with sporocarps of Glomus mosseae. Symbiosis, 24, 1–12.

    Google Scholar 

  • Forster, S. M., & Nicolson, T. H. (1981). Aggregation of sand from maritime embryo sand dune by microorganisms and higher plants. Soil Biology and Biochemistry, 13, 199–203.

    Article  Google Scholar 

  • Franzini, V., Azcon, R., Mendes, F., & Aroca, R. (2010). Interactions between Glomus species and Rhizobium strains affect the nutritional physiology of drought-stressed legume hosts. Journal of Plant Physiology, 167, 614–619.

    Article  CAS  PubMed  Google Scholar 

  • Gamalero, E., Berta, G., Massa, N., Glick, B. R., & Lingua, G. (2010). Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences for the growth of cucumber under salt-stress conditions. Journal of Applied Microbiology, 108, 236–245.

    Article  CAS  PubMed  Google Scholar 

  • Garbaye, J. (1994). Helper bacteria – a new dimension to the mycorrhizal symbiosis. The New Phytologist, 128, 197–210.

    Article  PubMed  Google Scholar 

  • Garcia-Garrido, J. M., & Ocampo, J. A. (1988). Interaction between Glomus mosseae and Erwinia carotovora and its effect on the growth of tomato plants. The New Phytologist, 110, 551–555.

    Article  Google Scholar 

  • Garmendia, I., Aguirreolea, J., & Goicoechea, N. (2006). Defence-related enzymes in pepper roots during interactions with arbuscular mycorrhizal fungi and/or Verticillium dahliae. BioControl, 51, 293–310.

    Article  CAS  Google Scholar 

  • Gorzelak, M., Asay, A., Pickles, B., & Simard, S. (2015). Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities. AoB plants, 7. https://doi.org/10.1093/aobpla/plv050.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Griffiths, R. I., Manefield, M., Ostle, N., McNamara, N., O’Donnell, A. G., Bailey, M. J., & Whiteley, A. (2004). 13CO2 pulse labelling of plant in tandem with stable isotope probing: methodological considerations for examining microbial function in the rhizosphere. Journal of Microbiological Methods, 58, 119–129.

    Article  CAS  PubMed  Google Scholar 

  • Grunwald, U., Guo, W., Fischer, K., Isayenkov, S., Ludwig-Müller, J., Hause, B., Yan, X., Küster, H., & Franken, P. (2009). Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treated Medicago truncatula roots. Planta, 229, 1023–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haggag, W. M., & Abd-El Latif, F. M. (2001). Interaction between vesicular arbuscular mycorrhizae and antagonistic biocontrol microorganisms on controlling root rot disease incidence of geranium plants. OnLine Journal of Biological Sciences, 1, 1147–1153.

    Article  Google Scholar 

  • Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species—opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43–56.

    Article  CAS  PubMed  Google Scholar 

  • Hartmann, A., Schmid, M., van Tuinen, D., & Berg, G. (2009). Plant-driven selection of microbes. Plant and Soil, 321, 235–257.

    Article  CAS  Google Scholar 

  • Hause, B., Mrosk, C., Isayenkov, S., & Strack, D. (2007). Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry, 68, 101–110.

    Article  CAS  PubMed  Google Scholar 

  • Hyakumachi, M., & Kubota, M. (2004a). Fungi as plant growth promoter and disease suppressor. In D. K. Arora (Ed.), Fungal biotechnology in agricultural, food, and environmental applications (Vol. 21, pp. 101–110). New York: Marcel Dekker Inc.

    Google Scholar 

  • Hyakumachi M, Kubota M (2004b) Biological control of plant diseases by plant growth promoting fungi. Proceedings of International Seminar Biological Control Soil Borne Plant Diseases (pp. 87–123). Japan-Argentina Joint Study.

    Google Scholar 

  • Isayenkov, S., Mrosk, C., Stenzel, I., Strack, D., & Hause, B. (2005). Suppression of allene oxide cyclase in hairy roots of Medicago truncatula reduces jasmonate levels and the degree of mycorrhization with Glomus intraradices. Plant Physiology, 139, 1401–1410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffries, P., & Barea, J. M. (2001). Arbuscular mycorrhiza: a key component of sustainable plant–soil ecosystems. In B. Hock (Ed.), The Mycota: fungal associations (Vol. 9, pp. 95–113). Berlin: Springer.

    Chapter  Google Scholar 

  • Johnson, D., Leake, J. R., & Read, D. J. (2001). Novel in-growth core system enables functional studies of grassland mycorrhizal mycelial networks. The New Phytologist, 152, 555–562.

    Article  PubMed  Google Scholar 

  • Joner, E., & Leyval, C. (2009). Phytoremediation of organic pollutants using mycorrhizal plants: a new aspect of rhizosphere interactions. In E. Lichtfouse, M. Navarrete, P. Debaeke, S. Véronique, & C. Alberola (Eds.), Sustainable agriculture (pp. 885–894). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Karagiannidis, N., Bletsos, F., & Stavropoulos, N. (2002). Effect of Verticillium wilt (Verticillium dahliae Kleb.) and mycorrhiza (Glomus mosseae) on root colonization, growth and nutrient uptake in tomato and eggplant seedlings. Scientia Horticulturae, 94, 145–156.

    Article  CAS  Google Scholar 

  • Kaye, J. W., Pfleger, F. L., & Stewart, E. L. (1984). Interaction of Glomus fasciculatum and Pythium ultimum on greenhouse-grown poinsettia. Canadian Journal of Botany, 62, 1575–1579.

    Article  Google Scholar 

  • Khan, A. (2005). Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. Journal of Trace Elements in Medicine and Biology, 18, 355–364.

    Article  CAS  PubMed  Google Scholar 

  • Kloepper, J. W., Ryu, C.-M., & Zhang, S. (2004). SA: Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 94, 1259–1266.

    Article  CAS  PubMed  Google Scholar 

  • Koike, N., Hyakumachi, M., Kageyama, K., Tsuyumu, S., & Doke, N. (2001). Induction of systemic resistance in cucumber against several diseases by plant growth promoting fungi: lignification and superoxide generation. European Journal of Plant Pathology, 107, 523–533.

    Article  CAS  Google Scholar 

  • Krishna, K. R., & Bagyaraj, D. J. (1983). Interaction between Glomus fasciculatum and Sclerotium rolfsii in peanut. Canadian Journal of Botany, 61, 2349–2351.

    Article  CAS  Google Scholar 

  • Ludwig-Muller, J. (2000). Indole-3-butyric acid in plant growth and development. Plant Growth Regulation, 32, 219–230.

    Article  CAS  Google Scholar 

  • MacDonald, R. M., Chandler, M. R., & Mosse, B. (1982). The occurrence of bacterium-like organelles in vesicular-arbuscular mycorrhizal fungi. The New Phytologist, 90, 659–663.

    Article  Google Scholar 

  • Mayo, K., Davis, R. E., & Motta, J. (1986). Stimulation of germination of spores of Glomus versiforme by spore-associated bacteria. Mycologia, 78, 426–431.

    Article  Google Scholar 

  • Meyer, J. R., & Linderman, R. G. (1986a). Response of subterranean clover to dual Inoculation with vesicular arbuscular mycorrhizal fungi and a plant growth-promoting bacterium, Pseudomonas putida. Soil Biology and Biochemistry, 18, 185–190.

    Article  CAS  Google Scholar 

  • Meyer, J. R., & Linderman, R. G. (1986b). Selective influence on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biology and Biochemistry, 18, 191–196.

    Article  Google Scholar 

  • Minerdi, D., Fani, R., Gallo, R., Boarino, A., & Bonfante, P. (2001). Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Applied and Environmental Microbiology, 67, 725–732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miransari, M., & Smith, D. L. (2008). Using signal molecule genistein to alleviate the stress of suboptimal root zone temperature on soybean–Bradyrhizobium symbiosis under different soil textures. Journal of Plant Interactions, 3, 287–295.

    Article  Google Scholar 

  • Mosse, B. (1959). The regular germination of resting spores and some observations on the growth requirements of an Endogone sp. causing vesicular-arbuscular mycorrhiza. Transactions of the British Mycological Society, 42, 273–286.

    Article  Google Scholar 

  • Nemec, S., Datnoff, L. E., & Strandberg, J. (1996). Efficacy of biocontrol agents in planting mixes to colonize plant roots and control root diseases of vegetables and citrus. Crop Protection, 15, 735–742.

    Article  Google Scholar 

  • Newsham, K. K., Fitter, A. H., & Watkinson, A. R. (1995). Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. Journal of Ecology, 83, 991–1000.

    Article  Google Scholar 

  • Phirke, N. V., Kothari, R. M., & Chincholkar, S. B. (2008). Rhizobacteria in mycorrhizosphere improved plant health and yield of banana by offering proper nourishment and protection against diseases. Applied Biochemistry and Biotechnology, 151, 441–451.

    Article  CAS  PubMed  Google Scholar 

  • Pieterse, C. M. J., van Pelt, J. A., Verhagen, B. W. M., Ton, J., van Wees, S. C. M., Léon-Kloosterziel, K. M., & van Loon, L. C. (2003). Induced systemic resistance by plant growth promoting rhizobacteria. Symbiosis, 35, 39–54.

    CAS  Google Scholar 

  • Pozo, M. J., & Azcón-Aguilar, C. (2007). Unravelling mycorrhiza-induced resistance. Current Opinion in Plant Biology, 10, 393–398.

    Article  CAS  PubMed  Google Scholar 

  • Puppi, G., Azcón, R., & Höflich, G. (1994). Management of positive interactions of arbuscular mycorrhizal fungi with essential groups of soil microorganisms. In S. Gianinazzi & H. Schüepp (Eds.), Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems (pp. 201–215). Basel: Birkhäuser Verlag.

    Chapter  Google Scholar 

  • Rillig, M. C., & Mummey, D. L. (2006). Mycorrhizas and soil structure. The New Phytologist, 171, 41–53.

    Article  CAS  PubMed  Google Scholar 

  • Roesti, D., Gaur, R., Johri, B. N., Imfeld, G., Sharma, S., Kawaljeet, K., & Aragno, M. (2006). Plant growth stage, fertilizer management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biology and Biochemistry, 38, 1111–1120.

    Article  CAS  Google Scholar 

  • Rosendahl, C. N., & Rosendahl, S. (1990). The role of vesicular-arbuscular mycorrhiza in controlling damping-off and growth reduction in cucumber caused by Pythium ultimum. Symbiosis, 9, 363–366.

    Google Scholar 

  • Rosewarne, G. M., Barker, S. J., Smith, S. E., Smith, A. F., Schachtman, D. P. A., & Schachtman, D. P. (1999). A Lycopersicon esculentum phosphate transporter (LePT1) involved in phosphorous uptake from a vesicular-arbuscular mycorrhizal fungus. The New Phytologist, 144, 507–516.

    Article  CAS  PubMed  Google Scholar 

  • Ross, J. P. (1980). Effect of nontreated soil on sporulation of vesicular-arbuscular mycorrhizal fungi associated with soybean. Phytopathology, 70, 1200–1205.

    Article  Google Scholar 

  • Saldajeno, M. G. B., & Hyakumachi, M. (2011). The plant growthpromoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae stimulate plant growth and reduce severity of anthracnose and damping-off diseases in cucumber (Cucumis sativus) seedlings. The Annals of Applied Biology, 159, 28–40.

    Article  Google Scholar 

  • Saleem, M., Arshad, M., Hussain, S., & Bhatti, A. S. (2007). Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology & Biotechnology, 34, 635–648.

    Article  CAS  Google Scholar 

  • Schnepf, A., Leitner, D., Klepsch, S., Pellerin, S., & Mollier, A. (2011). Modelling phosphorus dynamics in the soil-plant system. In E. K. Bünemann, A. Obserson, & E. Frossard (Eds.), Phosphorus in action: biological processes in soil phosphorus cycling (pp. 113–133). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Schreiner, R. P., Mihara, K. L., McDaniel, H., & Bethlenfalvay, G. J. (1997). Mycorrhizal fungi influence plant and soil functions and interactions. Plant and Soil, 188, 199–209.

    Article  CAS  Google Scholar 

  • Schrey, S. D., & Tarkka, M. T. (2008). Friends and foes: streptomycetes as modulators of plant disease and symbiosis. Antonie Van Leeuwenhoek, 94, 11–19.

    Article  PubMed  Google Scholar 

  • Secilia, J., & Bagyaraj, D. J. (1987). Bacteria and actinomycetes associated with pot cultures of vesicular arbuscular mycorrhizas. Canadian Journal of Microbiology, 33, 1069–1073.

    Article  Google Scholar 

  • Shimizu-Sato, S., Tanaka, M., & Mori, H. (2009). Auxin–cytokinin interactions in the control of shoot branching. Plant Molecular Biology, 69, 429–435.

    Article  CAS  PubMed  Google Scholar 

  • Shivanna, M. B., Meera, M. S., Kageyama, K., & Hyakumachi, M. (1996). Plant growth promoting fungi induce systemic disease resistance in cucumber. In T. Wenhua, R. J. Cook, & A. Rovira (Eds.), Advances in biological control of plant diseases (pp. 175–184). Beijing: China Agricultural University Press.

    Google Scholar 

  • Siddiqui, Z. A., & Akhtar, M. S. (2008a). Synergistic effects of antagonistic fungi and a plant growth promoting rhizobacterium, an arbuscular mycorrhizal fungus, or composted cow manure on populations of Meloidogyne incognita and growth of tomato. Biocontrol Science and Technology, 18, 279–290.

    Article  Google Scholar 

  • Siddiqui, Z. A., & Akhtar, M. S. (2008b). Effects of fertilizers, AM fungus and plant growth promoting rhizobacterium on the growth of tomato and on the reproduction of root-knot nematode Meloidogyne incognita. Journal of Plant Interactions, 3, 263–271.

    Article  Google Scholar 

  • Siddiqui, Z. A., & Akhtar, M. S. (2009). Effects of antagonistic fungi, plant growth promoting rhizobacteria, and arbuscular mycorrhizal fungi alone and in combination on the reproduction of Meloidogyne incognita and growth of tomato. Journal of General Plant Pathology, 75, 144–153.

    Article  Google Scholar 

  • Smith, S. E., & Read, D. J. (1997). Mycorrhizal symbiosis (2nd ed.). London: Academic.

    Google Scholar 

  • Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis (3rd ed.). New York: Academic.

    Google Scholar 

  • Söderberg, K. H., Olsson, P. A., & Baath, E. (2002). Structure and activity of the bacterial community in the rhizosphere of different plant species and the effect of arbuscular mycorrhizal colonisation. FEMS Microbiology Ecology, 40, 223–231.

    Article  PubMed  Google Scholar 

  • Tahmatsidou, V., O‘Sullivan, J., Cassells, A. C., Voyiatzis, D., & Paroussi, G. (2006). Comparison of AMF and PGPR inoculants for the suppression of Verticillium wilt of strawberry (Fragaria x ananassa cv. Selva). Applied Soil Ecology, 32, 316–324.

    Article  Google Scholar 

  • Tisdall, J. M., & Oades, J. M. (1979). Stabilization of soil aggregates by the root systems of rye grass. Australian Journal of Soil Research, 17, 429–441.

    Article  Google Scholar 

  • Tommerup, I. C. (1985). Inhibition of spore germination of vesicular-abuscular mycorrhizal fungi in soil. Transactions of the British Mycological Society, 85, 267–278.

    Article  Google Scholar 

  • Trotta, A., Varese, G. C., Gnavi, E., Fusconi, A., Sampò, S., & Berta, G. (1996). Interactions between the soilborne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant and Soil, 185, 199–209.

    Article  CAS  Google Scholar 

  • Van Loon, L. C. (2007). Plant responses to plant growth promoting rhizobacteria. European Journal of Plant Pathology, 119, 243–254.

    Article  CAS  Google Scholar 

  • Van Wees, S., Van der Ent, S., & Pieterse, C. (2008). Plant immune responses triggered by beneficial microbes. Current Opinion in Plant Biology, 11, 443–448.

    Article  PubMed  CAS  Google Scholar 

  • Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008). Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry, 40, 1–10.

    Article  CAS  Google Scholar 

  • Vivas, A., Vörös, I., Biró, B., Barea, J. M., Ruiz-Lozano, J. M., & Azcón, R. (2003a). Beneficial effects of indigenous Cd-tolerant and Cd-sensitive Glomus mosseae associated with a Cd-adapted strain of Brevibacillus sp. in improving plant tolerance to Cd contamination. Applied Soil Ecology, 24, 177–186.

    Article  Google Scholar 

  • Vivas, A., Vörös, I., Biró, B., Campos, E., Barea, J. M., & Azcón, R. (2003b). Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. isolated from cadmium polluted soil under increasing cadmium levels. Environment Pollution, 126, 179–189.

    Article  CAS  Google Scholar 

  • Von der Weid, I., Artursson, V., Seldin, L., & Jansson, J. K. (2005). Antifungal and root surface colonization properties of GFP-tagged Paenibacillus bransilensis PB177. World Journal of Microbiology and Biotechnology, 21, 1591–1597.

    Article  Google Scholar 

  • Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Hückelhoven, R., Neumann, C., von Wettstein, D., Franken, P., & Kogel, K. H. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences of the United States of America, 102, 13386–13391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wamberg, C., Christensen, S., Jakobsen, I., Muller, A. K., & Sorensen, S. J. (2003). The mycorrhizal fungus (Glomus intraradices) affects microbial activity in the rhizosphere of pea plants (Pisum sativum). Soil Biology and Biochemistry, 35, 1349–1357.

    Article  CAS  Google Scholar 

  • Wei, G., Kloepper, J. W., & Tuzun, S. (1991). Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology, 81, 1508–1512.

    Article  Google Scholar 

  • Wilson, G. W. T., Hetrick, B. A. D., & Kitt, D. G. (1988). Suppression of mycorrhizal growth-response of big bluestem by nonsterile soil. Mycologia, 80, 338–343.

    Article  Google Scholar 

  • Xavier, L. J. C., & Boyetchko, S. M. (2002). Mycorrhizae as biocontrol agents. In K. G. Mukerji, C. Manoharachary, & B. P. Chamola (Eds.), Techniques in mycorrhizal studies (pp. 493–536). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Zehnder, G. W., Murphy, J. F., Sikora, E. J., & Kloepper, J. W. (2001). Application to rhizobacteria for induced resistance. European Journal of Plant Pathology, 107, 39–50.

    Article  Google Scholar 

  • Zubek, S., Turnau, K., Tsimilli-Michael, M., & Strasser, R. J. (2009). Response of endangered plant species to inoculation with arbuscular mycorrhizal fungi and soil bacteria. Mycorrhiza, 19, 113–123.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömür Baysal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baysal, Ö., Silme, R.S. (2019). The Beneficial Influence of Microbial Interactions on Plant Diseases and Plant Growth Promoting Effect. In: Varma, A., Choudhary, D. (eds) Mycorrhizosphere and Pedogenesis. Springer, Singapore. https://doi.org/10.1007/978-981-13-6480-8_9

Download citation

Publish with us

Policies and ethics