A Systematic Review on the Role of Mycorrhiza in Soil Genesis Using Scientometrics Analysis

  • Geetanjali Baruah
  • Jagajjit Sahu


The constancy and productivity of agroecosystems and natural ecosystems depend solely on soil quality. Role of soil microflora in crop productivity is an integral part of the soil ecosystem with a major role played by mycorrhiza. A mycorrhiza is a symbiotic association between a fungus and the roots of a vascular host plant. Mycorrhizal fungi play a major role in the functioning of the microbial food web in the rhizosphere, drawing down plant sugars derived from photosynthesis and providing much-needed energy for the soil ecosystem. It also improves aggregate stability through hyphae networking, enhances soil structure by producing biological glue called glomalin, builds stable soil carbon, improves plant water use efficiency and increases the efficiency of utilization of important nutrients like phosphorus, sulphur, and nitrogen. It can be said soil quality and mycorrhizal fungi are complementary. In this book chapter, we represent a systematic review of the role of mycorrhiza in soil genesis using scientometric approach. The exponential growth of the literature on public domains provides the opportunity to perform the meta-analysis to find meaningful information. The traditional way of reviewing published reports have become obsolete whereas open source tools such as R has open new ways to access them in a robust and efficient way. The meta-data for the publications on Mycorrhiza related to the improvement of soil was collected from the Web of Science (WoS) and scientrometric analysis was performed. The main aim was to obtain the topical classification and find the key publications, findings, issues, etc. This piece of work will lead the scientific community, especially the naive researchers about the past and present scenario of developments done regarding the role of Mycorrhiza in soil genesis.


Scientometrics Mycorrhiza Pedogenesis Meta-analysis 



We offer our sincere regards to Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India for the workspace to conduct the scientometric analysis. We also acknowledge WoS for the raw bibliometric data.


  1. Aghababaei, F., Raiesi, F., & Hosseinpur, A. (2014). The significant contribution of mycorrhizal fungi and earthworms to maize protection and phytoremediation in cd-polluted soils. Pedobiologia, 57, 223–233.CrossRefGoogle Scholar
  2. Almaca, A., & Ortas, I. (2010). Growth response of maize plants (Zea mays L.) to wheat and lentil pre-cropping and to indigenous mycorrhizae in field soil. Spanish Journal of Agricultural Research, 8, S131–S136.CrossRefGoogle Scholar
  3. Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11, 959–975.CrossRefGoogle Scholar
  4. Audet, P. (2014). Arbuscular Mycorrhizal Fungi and metal phytoremediation: Ecophysiological complementarity in relation to environmental stress. In Emerging technologies and management of crop stress tolerance (Vol. 2). San Diego: Academic. Scholar
  5. Balota, E. L., Machineski, O., Honda, C., Yada, I. F. U., Barbosa, G. M. C., Nakatani, A. S., & Coyne, M. S. (2016). Response of arbuscular mycorrhizal fungi in different soil tillage systems to long-term swine slurry application. Land Degradation & Development, 27, 1141–1150.CrossRefGoogle Scholar
  6. Barin, M., Aliasgharzad, N., Olsson, P. A., Rasouli-Sadaghiani, M. H., & Moghddam, M. (2013). Abundance of arbuscular mycorrhizal fungi in relation to soil salinity around Lake Urmia in northern Iran analyzed by use of lipid biomarkers and microscopy. Pedobiologia, 56, 225–232.CrossRefGoogle Scholar
  7. Becker, W. N., & Hall, I. R. (1976). Gigaspora margarita, a new species in the Endogonaceae. Mycotaxon, 4, 155–160.Google Scholar
  8. Beltrano, J., Ruscitti, M., Arango, M. C., & Ronco, M. (2013). Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels. Journal of Soil Science and Plant Nutrition, 13, 123–141.Google Scholar
  9. Borie, F., Rubio, R., Morales, A., Curaqueo, G., & Cornejo, P. (2010). Arbuscular mycorrhizae in agricultural and forest ecosystems in Chile. Journal of Soil Science and Plant Nutrition, 10, 185–206.CrossRefGoogle Scholar
  10. Brunetti, G., Ruta, C., Traversa, A., d’Ambruoso, G., Tarraf, W., De Mastro, F., De Mastro, G., & Cocozza, C. (2018). Remediation of a heavy metals contaminated soil using mycorrhized and non-mycorrhized Helichrysum italicum (roth) don. Land Degradation & Development, 29, 91–104.Google Scholar
  11. Burri, K., Gromke, C., & Graf, F. (2013). Mycorrhizal fungi protect the soil from wind erosion: A wind tunnel study. Land Degradation & Development, 24, 385–392.CrossRefGoogle Scholar
  12. Camprubi, A., Calvet, C., Cabot, P., Pitet, M., & Estaun, V. (2010). Arbuscular mycorrhizal fungi associated with psammophilic vegetation in Mediterranean coastal sand dunes. Spanish Journal of Agricultural Research, 8, S96–S102.CrossRefGoogle Scholar
  13. Deguchi, S., Uozumi, S., Touno, E., Kaneko, M., & Tawaraya, K. (2012). Arbuscular mycorrhizal colonization increases phosphorus uptake and growth of corn in a white clover living mulch system. Soil Science and Plant Nutrition, 58, 169–172.CrossRefGoogle Scholar
  14. Demenois, J., Rey, F., Stokes, A., & Carriconde, F. (2017). Does arbuscular and ectomycorrhizal fungal inoculation improve soil aggregate stability? A case study on three tropical species growing in ultramafic ferralsols. Pedobiologia, 64, 8–14.CrossRefGoogle Scholar
  15. Dias, J. M., Oliveira, R. S., Franco, A. R., Ritz, K., Nunan, N., & Castro, P. M. L. (2010). Assessment of mycorrhizal colonisation and soil nutrients in unmanaged fire-impacted soils from two target restoration sites. Spanish Journal of Agricultural Research, 8, S86–S95.CrossRefGoogle Scholar
  16. Diaz, G., & Honrubia, M. (1994). A mycorrhizal survey of plants growing on mine wastes in Southeast Spain. Arid Soil Research and Rehabilitation, 8, 59–68.Google Scholar
  17. Elhindi, K., Al-Suhaibani, N., El-Hendawy, S., & Al-Mana, F. (2018). Effects of arbuscular mycorrhizal fungi on the growth of two turfgrasses grown under greenhouse conditions. Soil Science and Plant Nutrition, 64, 238–243.CrossRefGoogle Scholar
  18. Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of Pub Med, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. The FASEB Journal, 22, 338–342.CrossRefGoogle Scholar
  19. Finney, D. M., Buyer, J. S., & Kaye, J. P. (2017). Living cover crops have immediate impacts on soil microbial community structure and function. Journal of Soil and Water Conservation, 72, 361–373.CrossRefGoogle Scholar
  20. Fuzy, A., Biro, B., & Toth, T. (2010). Short communication. Effect of saline soil parameters on endomycorrhizal colonisation of dominant halophytes in four Hungarian sites. Spanish Journal of Agricultural Research, 8, S144–S148.CrossRefGoogle Scholar
  21. Garcia, S., Pezzani, F., & Rodriguez-Blanco, A. (2017). Long-term phosphorus fertilization effects on arbuscular mycorrhizal fungal diversity in Uruguayan grasses. Journal of Soil Science and Plant Nutrition, 17, 1013–1027.CrossRefGoogle Scholar
  22. Gruber, N., Friedlingstein, P., Field, C. B., Valentini, R., Heimann, M., Richey, J. E., Lankao, P. R., Schulze, E. D., & Chen, C. T. A. (2004). The vulnerability of the carbon cycle in the 21st century: An assessment of carbon-climate-human interactions. In C. B. Field & M. R. Raupach (Eds.), SCOPE 62: The global carbon cycle. Washington, DC/Covelo/London: Island Press.Google Scholar
  23. Ibrahim, M. A., Campbell, W. F., Rupp, L. A., & Allen, E. B. (1990). Effects of mycorrhizae on sorghum growth, photosynthesis, and stomatal conductance under drought conditions. Arid Soil Research and Rehabilitation, 4, 99–107.CrossRefGoogle Scholar
  24. Jansa, J., Oberholzer, H. R., & Egli, S. (2009). Environmental determinants of the arbuscular mycorrhizal fungal infectivity of Swiss agricultural soils. European Journal of Soil Biology, 45, 400–408.CrossRefGoogle Scholar
  25. Jansa, J., Bukovská, P., & Gryndler, M. (2013). Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts – or just soil free-riders? Frontiers in Plant Science, 16, 4–134.Google Scholar
  26. Khalvati, M., Bartha, B., Dupigny, A., & Schroeder, P. (2010). Arbuscular mycorrhizal association is beneficial for growth and detoxification of xenobiotics of barley under drought stress. Journal of Soils and Sediments, 10, 54–64.CrossRefGoogle Scholar
  27. Koske, R. E., & Gemma, J. N. (1986). Glomus microaggregatum, a new species in the Endogonaceae. Mycotaxon, 26, 125–132.Google Scholar
  28. Koske, R. E., & Walker, C. (1986). Glomus globiferum: A new species of Endogonaceae with a hyphal peridium. Mycotaxon, 26, 133–142.Google Scholar
  29. Linderman, R. G. (1988). mycorrhizal interactions with the rhizosphere microflora: The mycorrhizosphere effect. Supervisory research plant pathologist, Agricultural Research Service, United States Department of Agriculture, Horticultural Crops Research Laboratory. Corvallis. OR. Phytopathology, 78, 366–371.Google Scholar
  30. Lioussanne, L. (2010). The role of the arbuscular mycorrhiza-associated rhizobacteria in the biocontrol of soilborne phytopathogens. Spanish Journal of Agricultural Research, 8, S51–S61.CrossRefGoogle Scholar
  31. Longdoz, B., Yernaux, M., & Aubinet, M. (2000). Soil CO2 efflux measurements in a mixed forest: Impact of chamber distances, spatial variability and seasonal evolution. Global Change Biology, 6, 907–917.CrossRefGoogle Scholar
  32. Loth, F. G., & Hofner, W. (1995). Influence of sewage sludge treated soils on the infectivity of VA-mycorrhizal fungi isolates in different plants. Agribiological Research-Zeitschrift Fur Agrarbiologie Agrikulturchemie Okologie, 48, 269–281.Google Scholar
  33. Medina, A., & Azcon, R. (2010). Effectiveness of the application of arbuscular mycorrhiza fungi and organic amendments to improve soil quality and plant performance under stress conditions. Journal of Soil Science and Plant Nutrition, 10, 354–372.CrossRefGoogle Scholar
  34. Meir, D., Pivonia, S., Levita, R., Dori, I., Ganot, L., Meir, S., Salim, S., Resnick, N., Wininger, S., Shlomo, E., & Koltai, H. (2010). Application of mycorrhizae to ornamental horticultural crops: Lisianthus (Eustoma grandiflorum) as a test case. Spanish Journal of Agricultural Research, 8, S5–S10.Google Scholar
  35. Morton, J. B., & Walker, C. (1984). Glomus diaphanum: A new species in the Endogonaceae common to West Virginia. Mycotaxon, 21, 431–440.Google Scholar
  36. Neeraj, N., & Singh, K. (2011). Organic amendments to soil inoculated arbuscular mycorrhizal fungi and Pseudomonas fluorescens treatments reduce the development of root-rot disease and enhance the yield of Phaseolus vulgaris L. European Journal of Soil Biology, 47, 288–295.CrossRefGoogle Scholar
  37. Nicolson, T. N., & Schenck, N. C. (1979). Endogonaceous mycorrhizal. Endophytes in Florida. Mycologia, 71, 178–198.CrossRefGoogle Scholar
  38. Ortas, I. (2010). Effect of mycorrhiza application on plant growth and nutrient uptake in cucumber production under field conditions. Spanish Journal of Agricultural Research, 8, S116–S122.CrossRefGoogle Scholar
  39. Pandey, R. R., Sharma, G., Singh, T. B., & Tripathi, S. K. (2010). Factors influencing soil CO2 efflux in a northeastern Indian oak forest and plantation. African Journal of Plant Science, 4, 280–289.Google Scholar
  40. Papp, M., Foti, S., Nagy, Z., Pinter, K., Posta, K., Fekete, S., Csintalan, Z., & Balogh, J. (2018). Rhizospheric, mycorrhizal and heterotrophic respiration in dry grasslands. European Journal of Soil Biology, 85, 43–52.CrossRefGoogle Scholar
  41. Schenck, N. C., & Smith, G. S. (1982). Additional new and unreported species of mycorrhizal fungi (Endogonaceae) from Florida. Mycologia, 74, 77–92.CrossRefGoogle Scholar
  42. Sene, G., Samba-Mbaye, R., Thiao, M., Khasa, D., Kane, A., Manga, A., Mbaye, M. S., & Sylla, S. N. (2012). The abundance and diversity of legume-nodulating rhizobia and arbuscular mycorrhizal fungal communities in soil samples from deforested and man-made forest systems in a semiarid Sahel region in Senegal. European Journal of Soil Biology, 52, 30–40.CrossRefGoogle Scholar
  43. Shi, Z., Wang, F., & Liu, Y. (2012). Response of soil respiration under different mycorrhizal strategies to precipitation and temperature. Journal of Soil Science and Plant Nutrition, 12, 411–420.Google Scholar
  44. Shukla, A., Vyas, D., & Jha, A. (2013). Soil depth: An overriding factor for distribution of arbuscular mycorrhizal fungi. Journal of Soil Science and Plant Nutrition, 13, 23–33.Google Scholar
  45. Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis (787 p). Amsterdam: Academic.Google Scholar
  46. Smith, G. S., & Schenck, N. C. (1985). Two new dimorphic species in the Endogonaceae: Glomus ambisporum and Glomus heterosporum. Mycologia, 4, 566–574.CrossRefGoogle Scholar
  47. Tyagi, J., Varma, A., & Pudake, R. N. (2017). Evaluation of comparative effects of arbuscular mycorrhiza (Rhizophagus intraradices) and endophyte (Piriformospora indica) association with finger millet (Eleusine coracana) under drought stress. European Journal of Soil Biology, 81, 1–10.CrossRefGoogle Scholar
  48. Ultra, V. U. Y., Tanaka, S., Sakurai, K., & Iwasaki, K. (2007). Arbuscular mycorrhizal fungus (Glomus aggregatum) influences biotransformation of arsenic in the rhizosphere of sunflower (Helianthus annuus L.). Soil Science and Plant Nutrition, 53, 499–508.CrossRefGoogle Scholar
  49. Valetti, L., Iriarte, L., & Fabra, A. (2016). Effect of previous cropping of rapeseed (Brassica napus L.) on soybean (Glycine max) root mycorrhization, nodulation, and plant growth. European Journal of Soil Biology, 76, 103–106.CrossRefGoogle Scholar
  50. Walker, C., & Sanders, F. E. (1986). Taxonomic concepts in the Endogonaceae: III. The separation of Scutellospora gen. nov. from Gigaspora Gerd. & Trappe. Mycotaxon, 27, 169–182.Google Scholar
  51. Wang, P., Zhang, J. J., Xia, R. X., Shu, B., Wang, M. Y., Wu, Q. S., & Dong, T. (2011). Arbuscular mycorrhiza, rhizospheric microbe populations and soil enzyme activities in citrus orchards under two types of no-tillage soil management. Spanish Journal of Agricultural Research, 9, 1307–1318.CrossRefGoogle Scholar
  52. Wu, Q. S., Xia, R. X., & Zou, Y. N. (2008). Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. European Journal of Soil Biology, 44, 122–128.CrossRefGoogle Scholar
  53. Zaller, J. G., Frank, T., & Drapela, T. (2011). Soil sand content can alter effects of different taxa of mycorrhizal fungi on plant biomass production of grassland species. European Journal of Soil Biology, 47, 175–181.CrossRefGoogle Scholar
  54. Zarea, M. J., Ghalavand, A., Goltapeh, E. M., Rejali, F., & Zamaniyan, M. (2009). Effects of mixed cropping, earthworms (Pheretima sp.), and arbuscular mycorrhizal fungi (Glomus mosseae) on plant yield, mycorrhizal colonization rate, soil microbial biomass, and nitrogenase activity of free-living rhizosphere bacteria. Pedobiologia, 52, 223–235.CrossRefGoogle Scholar
  55. Zhu, Y. G., & Miller, R. M. (2003). Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems. Trends in Plant Science, 8, 407–409.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Geetanjali Baruah
    • 1
  • Jagajjit Sahu
    • 2
  1. 1.Department of Agricultural BiotechnologyAssam Agricultural UniversityJorhatIndia
  2. 2.Department of Mycology and Plant Pathology, Institute of Agricultural SciencesBanaras Hindu UniversityVaranasiIndia

Personalised recommendations