Skip to main content

Soil Health: The Contribution of Microflora and Microfauna

  • Chapter
  • First Online:

Abstract

Soil is a complex aggregate of both living and non-living components. There is extreme diversity in the community of living organisms that may be found within the soil. The soil living organisms has been divided into both the micro and macrofauna and flora. These living organisms have been implicated in various processes such as nutrient cycles, biological control, soil structure, and the degradation of agrochemicals and pollutants. In a nutshell these organisms enhanced soil fertility and quality. In the recent years the focus of studies have been towards maintaining soil fertility with minimal soil fertilization. This is largely due to the increase in unfertile land that is caused by overuse and total dependence on chemical fertilization that has affected the soil ecosystem. As the biological activity of soil has been connected to the process of soil fertility and quality, understanding the contribution of each of these players in the soil ecosystem is important. Practices that contribute towards enriched microflora and microfauna diversity in an ecosystem should be encouraged to increase diversity, improve soil health, crop health and production. This chapter will deal with the role of microflora and microfauna in soil health and fertility and the various roles played by these organisms in affecting plant productivity in any given agro-ecosystem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aghighi, S., Shahidi Bonjar, G., & Saadoun, I. (2004). First report of antifungal properties of a new strain of Streptomyces plicatus (strain101) against four Iranian phytopathogenic isolates of Verticillium dahliae, a new horizon in biocontrol agents. Biotechnology (Faisalabad), 3, 90–97.

    Google Scholar 

  • Agrawal, P. K., Agrawal, S., & Shrivastava, R. (2015). Modern molecular approaches for analyzing microbial diversity from mushroom compost ecosystem. 3Biotech, 5, 853–866.

    Google Scholar 

  • Angel, R., Claus, P., & Conrad, R. (2012). Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. The ISME Journal, 6, 847.

    Article  CAS  PubMed  Google Scholar 

  • Balvanera, P., Pfisterer, A. B., Buchmann, N., He, J. S., Nakashizuka, T., Raffaelli, D., & Schmid, B. (2006). Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 9, 1146–1156.

    Article  PubMed  Google Scholar 

  • Bardgett, R. D., Bowman, W. D., Kaufmann, R., & Schmidt, S. K. (2005). A temporal approach to linking aboveground and belowground ecology. Trends in Ecology & Evolution, 20, 634–641.

    Article  Google Scholar 

  • Bates, S. T., Berg-Lyons, D., Caporaso, J. G., Walters, W. A., Knight, R., & Fierer, N. (2011). Examining the global distribution of dominant archaeal populations in soil. The ISME Journal, 5, 908.

    Article  CAS  PubMed  Google Scholar 

  • Battigelli, J. P., & Berch, S. (2002). Soil Fauna in the sub-boreal spruce (sbs) installations of the long-term soil productivity (ltsp) study of Central British Columbia: One year results for soil Mesofauna and microfauna. British Columbia: Ministry of Forests, Prince George, Prince Rupert and Caribou Forest Regions.

    Google Scholar 

  • Beare, M., Reddy, M. V., Tian, G., & Srivastava, S. (1997). Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: The role of decomposer biota. Applied Soil Ecology, 6, 87–108.

    Article  Google Scholar 

  • Bergmann, G. T., et al. (2011). The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biology and Biochemistry, 43, 1450–1455.

    Article  CAS  PubMed  Google Scholar 

  • Bonkowski, M., & Roy, J. (2005). Soil microbial diversity and soil functioning affect competition among grasses in experimental microcosms. Oecologia, 143, 232–240.

    Article  PubMed  Google Scholar 

  • Bonkowski, M., Cheng, W., Griffiths, B. S., Alphei, J., & Scheu, S. (2000). Microbial-faunal interactions in the rhizosphere and effects on plant growth §. European Journal of Soil Biology, 36, 135–147.

    Article  Google Scholar 

  • Borgonie, G., et al. (2011). Nematoda from the terrestrial deep subsurface of South Africa. Nature, 474, 79.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M., et al. (2002). Impacts of soil faunal community composition on model grassland ecosystems. Science, 298, 615–618.

    Article  CAS  PubMed  Google Scholar 

  • Brady, N., & Weil, R. (2008). Soil colloids: Seat of soil chemical and physical acidity. Upper Saddle River: Pearson Education.

    Google Scholar 

  • Dang, H., Zhang, X., Sun, J., Li, T., Zhang, Z., & Yang, G. (2008). Diversity and spatial distribution of sediment ammonia-oxidizing crenarchaeota in response to estuarine and environmental gradients in the Changjiang Estuary and East China Sea. Microbiology, 154, 2084–2095.

    Article  CAS  PubMed  Google Scholar 

  • Davis, K. E., Sangwan, P., & Janssen, P. H. (2011). Acidobacteria, Rubrobacteridae and Chloroflexi are abundant among very slow-growing and mini-colony-forming soil bacteria. Environmental Microbiology, 13, 798–805.

    Article  PubMed  Google Scholar 

  • De Vries, F. T., & Shade, A. (2013). Controls on soil microbial community stability under climate change. Frontiers in Microbiology, 4, 265.

    Article  PubMed  PubMed Central  Google Scholar 

  • DeBruyn JM, Nixon LT, Fawaz MN, Johnson AM, Radosevich M (2011) Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Applied and Environmental Microbiology. 05005-05011.

    Google Scholar 

  • Denton, C. S., Bardgett, R. D., Cook, R., & Hobbs, P. J. (1999). Low amounts of root herbivory positively influence the rhizosphere microbial community in a temperate grassland soil. Soil Biology and Biochemistry, 31, 155–165.

    Article  CAS  Google Scholar 

  • Dhar, D. W., Prasanna, R., & Singh, B. (2007). Comparative performance of three carrier based blue green algal biofertilizers for sustainable rice cultivation. Journal of Sustainable Agriculture, 30, 41–50.

    Article  Google Scholar 

  • Dojka, M. A., Harris, J. K., & Pace, N. R. (2000). Expanding the known diversity and environmental distribution of an uncultured phylogenetic division of bacteria. Applied and Environmental Microbiology, 66, 1617–1621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffy, J. E., Cardinale, B. J., France, K. E., McIntyre, P. B., Thébault, E., & Loreau, M. (2007). The functional role of biodiversity in ecosystems: Incorporating trophic complexity. Ecology Letters, 10, 522–538.

    Article  PubMed  Google Scholar 

  • Eilers, K. G., Lauber, C. L., Knight, R., & Fierer, N. (2010). Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biology and Biochemistry, 42, 896–903.

    Article  CAS  Google Scholar 

  • Erguder, T. H., Boon, N., Wittebolle, L., Marzorati, M., & Verstraete, W. (2009). Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiology Reviews, 33, 855–869.

    Article  CAS  PubMed  Google Scholar 

  • Ferris, H., Venette, R., Van Der Meulen, H., & Lau, S. (1998). Nitrogen mineralization by bacterial-feeding nematodes: Verification and measurement. Plant and Soil, 203, 159–171.

    Article  CAS  Google Scholar 

  • Fierer, N., Bradford, M. A., & Jackson, R. B. (2007). Toward an ecological classification of soil bacteria. Ecology, 88, 1354–1364.

    Article  PubMed  Google Scholar 

  • Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A., & Cleveland, C. C. (2009). Global patterns in belowground communities. Ecology Letters, 12, 1238–1249.

    Article  PubMed  Google Scholar 

  • Franco-Correa, M., Quintana, A., Duque, C., Suarez, C., Rodríguez, M. X., & Barea, J.-M. (2010). Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Applied Soil Ecology, 45, 209–217.

    Article  Google Scholar 

  • Garrity, G. M., & Holt, J. G. (2001). The road map to the manual. In D. R. Boone, R. W. Castenholz, & G. M. Garrity (Eds.), Bergey’s manual of systematic bacteriology (Vol. 1, 2nd ed., pp. 119–166). Springer: New York.

    Chapter  Google Scholar 

  • Goldfarb, K. C., et al. (2011). Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Frontiers in Microbiology, 2, 94.

    Article  PubMed  PubMed Central  Google Scholar 

  • Govaerts, B., et al. (2007). Influence of tillage, residue management, and crop rotation on soil microbial biomass and catabolic diversity. Applied Soil Ecology, 37, 18–30.

    Article  Google Scholar 

  • Gremion, F., Chatzinotas, A., & Harms, H. (2003). Actinobacteria might be a dominant part of the metabolically active bacteria in heavy-metal contaminated bulk and rhizosphere soil. Environmental Microbiology, 5, 896–907.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, B. S., Ritz, K., Bardgett, R. D., Cook, R., Christensen, S., Ekelund, F., Sorensen, S. J., Baath, E., Bloem, J., de Ruiter, P. C., Dolfing, J., & Nicolardot, B. (2000). Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: An examination of the biodiversity-ecosystem function relationship. Oikos, 90, 279–294.

    Article  Google Scholar 

  • Griffiths, B. S., Ritz, K., Wheatley, R., Kuan, H. L., Boag, B., Christensen, S., Ekelund, F., Sorensen, S. J., Muller, S., & Bloem, J. (2001). An examination of the biodiversity-ecosystem function relationship in arable soil microbial communities. Soil Biology and Biochemistry, 33, 1713–1722.

    Article  CAS  Google Scholar 

  • He, J., Shen, J., Lm, Z., Zhu, Y., Zheng, Y., Xu, M., & Di, H. (2007). Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environmental Microbiology, 9, 2364–2374.

    Article  CAS  PubMed  Google Scholar 

  • Hector, A., & Bagchi, R. (2007). Biodiversity and ecosystem multifunctionality. Nature, 448, 188.

    Article  CAS  PubMed  Google Scholar 

  • Hibbett, D. S., et al. (2007). A higher-level phylogenetic classification of the Fungi. Mycological Research, 111, 509–547.

    Article  PubMed  Google Scholar 

  • Holmes, A. J., Bowyer, J., Holley, M. P., O’donoghue, M., Montgomery, M., & Gillings, M. R. (2000). Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils. FEMS Microbiology Ecology, 33, 111–120.

    Google Scholar 

  • Hoorman, J. J. (2011). The role of soil protozoa and nematodes Fact sheet: agriculture and natural resources (pp. 1–5). Colombus: The Ohio State University Extension.

    Google Scholar 

  • Hugenholtz, P., Goebel, B. M., & Pace, N. R. (1998). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. Journal of Bacteriology, 180, 4765–4774.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt, H., & Wall, D. (2002). Modelling the effects of loss of soil biodiversity on ecosystem function. Global Change Biology, 8, 33–50.

    Article  Google Scholar 

  • Ingham, R. E., Trofymow, J., Ingham, E. R., & Coleman, D. C. (1985). Interactions of bacteria, fungi, and their nematode grazers: Effects on nutrient cycling and plant growth. Ecological Monographs, 55, 119–140.

    Article  Google Scholar 

  • Janssen, P. H. (2006). Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Applied and Environmental Microbiology, 72, 1719–1728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen, P. H., Yates, P. S., Grinton, B. E., Taylor, P. M., & Sait, M. (2002). Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Applied and Environmental Microbiology, 68, 2391–2396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia, Z., & Conrad, R. (2009). Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environmental Microbiology, 11, 1658–1671.

    Article  CAS  PubMed  Google Scholar 

  • Jones, R. T., Robeson, M. S., Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. The ISME Journal, 3, 442.

    Article  CAS  PubMed  Google Scholar 

  • Joseph, S. J., Hugenholtz, P., Sangwan, P., Osborne, C. A., & Janssen, P. H. (2003). Laboratory cultivation of widespread and previously uncultured soil bacteria. Applied and Environmental Microbiology, 69, 7210–7215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaushik, B. (2004). Use of blue-green algae and Azolla biofertilizers in rice cultivation and their influence on soil properties. In Microbiology and biotechnology for sustainable development (pp. 166–184). New Delhi: CBS.

    Google Scholar 

  • Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A., & Kuramae, E. E. (2016). The ecology of Acidobacteria: Moving beyond genes and genomes. Frontiers in Microbiology, 7, 744.

    PubMed  PubMed Central  Google Scholar 

  • Kirk, P., Cannon, P., Minter, D., & Stalpers, J. (2008). Dictionary of the Fungi (Vol. 396). Wallingford: CABI.

    Google Scholar 

  • Könneke, M., Bernhard, A. E., José, R., Walker, C. B., Waterbury, J. B., & Stahl, D. A. (2005). Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437, 543.

    Article  PubMed  CAS  Google Scholar 

  • Kuzyakov, Y. (2002). Factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science, 165, 382–396.

    Article  CAS  Google Scholar 

  • Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75, 5111–5120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, S.-H., Ka, J.-O., & Cho, J.-C. (2008). Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil. FEMS Microbiology Letters, 285, 263–269.

    Article  CAS  PubMed  Google Scholar 

  • Leininger, S., et al. (2006). Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 442, 806.

    Article  CAS  PubMed  Google Scholar 

  • Lindahl, B. D., Ihrmark, K., Boberg, J., Trumbore, S. E., Högberg, P., Stenlid, J., & Finlay, R. D. (2007). Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytologist, 173, 611–620.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y. J, Hodson, M. C., & Hall, B. D. (2006). Loss of the flagellum happened only once in the fungal lineage: Phylogenetic structure of kingdom Fungi inferred from RNA polymerase II subunit genes. BMC Evolutionary Biology, 6: 74. www.biomedcentral.com/1471–2148/6/74

  • Lüdemann, H., & Conrad, R. (2000). Molecular retrieval of large 16S rRNA gene fragments from an Italian rice paddy soil affiliated with the class Actinobacteria. Systematic and Applied Microbiology, 23, 582–584.

    Article  PubMed  Google Scholar 

  • Lutzoni, F., Pagel, M., & Reeb, V. (2001). Major fungal lineages are derived from lichen symbiotic ancestors. Nature, 411, 937.

    Article  CAS  PubMed  Google Scholar 

  • Mäder, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., & Niggli, U. (2002). Soil fertility and biodiversity in organic farming. Science, 296, 1694–1697.

    Article  PubMed  Google Scholar 

  • Maestre, F. T., et al. (2012). Plant species richness and ecosystem multifunctionality in global drylands. Science, 335, 214–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maha, A. A. L. (2013). Ecological role of animal diversity in soil system (A Case Study at El- Rawakeeb Dry Land Research Station, Sudan) 1st Annual International Interdisciplinary Conference, AIIC 2013, 24–26 April, Azores, Portugal – Proceedings, pp. 345–350.

    Google Scholar 

  • Maherali, H., & Klironomos, J. N. (2007). Influence of phylogeny on fungal community assembly and ecosystem functioning. Science, 316, 1746–1748.

    Article  CAS  PubMed  Google Scholar 

  • Mukhtar, H., Lin, Y.-P., & Anthony, J. (2017). Ammonia oxidizing archaea and bacteria in east Asian paddy soils—A mini review. Environments, 4, 84.

    Article  Google Scholar 

  • Nacke, H., et al. (2011). Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One, 6, e17000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nannipieri, P., Grego, S., Ceccanti, B., Bollag, J., & Stotzky, G. (1990). Ecological significance of the biological activity in soil. Soil Biochemistry, 6, 293–355.

    Google Scholar 

  • Neher, D. A. (2001). Role of nematodes in soil health and their use as indicators. Journal of Nematology, 33, 161.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nemergut, D. R., et al. (2011). Global patterns in the biogeography of bacterial taxa. Environmental Microbiology, 13, 135–144.

    Article  PubMed  PubMed Central  Google Scholar 

  • Newton, L., & Chantal, H. (2010). Soil Biology of the Canadian Prairies. Agricultural Soils of the Prairies. PS&C. Prairie Soils and Crops Journal, 3, 16–24.

    Google Scholar 

  • Nielsen, M., & Winding, A. (2002). Microorganisms as indicators of soil health. National Environmental Research Institute, Denmark Tech Rep:388.

    Google Scholar 

  • Offre, P., Prosser, J. I., & Nicol, G. W. (2009). Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene. FEMS Microbiology Ecology, 70, 99–108.

    Article  CAS  PubMed  Google Scholar 

  • Osler, G. H., & Sommerkorn, M. (2007). Toward a complete soil C and N cycle: Incorporating the soil fauna. Ecology, 88, 1611–1621.

    Article  PubMed  Google Scholar 

  • Plassard, C., & Dell, B. (2010). Phosphorus nutrition of mycorrhizal trees. Tree Physiology, 30, 1129–1139.

    Article  CAS  PubMed  Google Scholar 

  • Prosser, J. I., & Nicol, G. W. (2012). Archaeal and bacterial ammonia-oxidisers in soil: The quest for niche specialisation and differentiation. Trends in Microbiology, 20, 523–531.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, A. E., Barea, J.-M., McNeill, A. M., & Prigent-Combaret, C. (2009). Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil, 321, 305–339.

    Article  CAS  Google Scholar 

  • Rincon-Florez, V. A., Carvalhais, L. C., & Schenk, P. M. (2013). Culture-independent molecular tools for soil and rhizosphere microbiology. Diversity, 5, 581–612.

    Article  Google Scholar 

  • Roesch, L. F., et al. (2007). Pyrosequencing enumerates and contrasts soil microbial diversity. The ISME Journal, 1, 283.

    Article  CAS  PubMed  Google Scholar 

  • Roger, P.-A., & Reynaud, P.-A. (1982). Free—Living blue—Green algae in tropical soils. In Microbiology of tropical soils and plant productivity (pp. 147–168). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Saadatnia, H., & Riahi, H. (2009). Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants. Plant, Soil and Environment, 55, 207–212.

    Article  Google Scholar 

  • Sahu, D., Priyadarshani, I., & Rath, B. (2012). Cyanobacteria–as potential biofertilizer. CIBTech Journal of Microbiology, 1, 20–26.

    Google Scholar 

  • Sangwan, P., Chen, X., Hugenholtz, P., & Janssen, P. H. (2004). Chthoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, Spartobacteria classis nov., of the phylum Verrucomicrobia. Applied and Environmental Microbiology, 70, 5875–5881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schimel, J. P., & Bennett, J. (2004). Nitrogen mineralization: Challenges of a changing paradigm. Ecology, 85, 591–602.

    Article  Google Scholar 

  • Schrey, S. D., Schellhammer, M., Ecke, M., Hampp, R., & Tarkka, M. T. (2005). Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytologist, 168, 205–216.

    Article  CAS  PubMed  Google Scholar 

  • Seastedt, T., James, S., & Todd, T. (1988). Interactions among soil invertebrates, microbes and plant growth in the tallgrass prairie. Agriculture, Ecosystems & Environment, 24, 219–228.

    Article  Google Scholar 

  • Simard, S. W., Beiler, K. J., Bingham, M. A., Deslippe, J. R., Philip, L. J., & Teste, F. P. (2012). Mycorrhizal networks: Mechanisms, ecology and modelling. Fungal Biology Reviews, 26, 39–60.

    Article  Google Scholar 

  • Sohlenius, B., Boström, S., & Sandor, A. (1988). Carbon and nitrogen budgets of nematodes in arable soil. Biology and Fertility of Soils, 6, 1–8.

    Article  Google Scholar 

  • Spain, A. M., Krumholz, L. R., & Elshahed, M. S. (2009). Abundance, composition, diversity and novelty of soil Proteobacteria. The ISME Journal, 3, 992.

    Article  CAS  PubMed  Google Scholar 

  • Sugiyarto, S. (2009). The effect of mulching technology to enhance the diversity of soil macroinvertebrates in Sengon-based agroforestry systems. Biodiversitas Journal of Biological Diversity, 10, 129–133.

    Article  Google Scholar 

  • Tarkka, M. T., & Frey-Klett, P. (2008). Mycorrhiza helper bacteria. In Mycorrhiza – State of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics (pp. 113–132). Heidelberg: Springer.

    Google Scholar 

  • Terkina, I., Parfenova, V., & Ahn, T. (2006). Antagonistic activity of actinomycetes of Lake Baikal. Applied Biochemistry and Microbiology, 42, 173–176.

    Article  CAS  Google Scholar 

  • Teste, F. P., Simard, S. W., & Durall, D. M. (2009). Role of mycorrhizal networks and tree proximity in ectomycorrhizal colonization of planted seedlings. Fungal Ecology, 2, 21–30.

    Article  Google Scholar 

  • Thomas, W. C. (2013). Role of arthropods in maintaining soil fertility. Agriculture, 3, 629–659. www.mdpi.com/journal/agriculture

    Article  Google Scholar 

  • Tourna, M., Freitag, T. E., Nicol, G. W., & Prosser, J. I. (2008). Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environmental Microbiology, 10, 1357–1364.

    Article  CAS  PubMed  Google Scholar 

  • Tourna, M., et al. (2011). Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proceedings of the National Academy of Sciences, 108, 8420–8425.

    Article  CAS  Google Scholar 

  • Treseder, K. K., Kivlin, S. N., & Hawkes, C. V. (2011). Evolutionary trade-offs among decomposers determine responses to nitrogen enrichment. Ecology Letters, 14, 933–938.

    Article  PubMed  Google Scholar 

  • Treusch, A. H., Leininger, S., Kletzin, A., Schuster, S. C., Klenk, H. P., & Schleper, C. (2005). Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environmental Microbiology, 7, 1985–1995.

    Article  CAS  PubMed  Google Scholar 

  • Trofymow, L., & Coleman, D. (1982). The role of bacterivorous and fungivorous nematodes in cellulose and chitin decomposition. In Nematodes in soil ecosystems (pp. 111–138). Austin: University of Texas.

    Google Scholar 

  • Uroz, S., Calvaruso, C., Turpault, M.-P., Pierrat, J.-C., Mustin, C., & Frey-Klett, P. (2007). Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Applied and Environmental Microbiology, 73, 3019–3027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Der Heijden, M. G., Bardgett, R. D., & Van Straalen, N. M. (2008). The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296–310.

    Article  PubMed  Google Scholar 

  • Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen, J. A., et al. (2004). Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304, 66–74. https://doi.org/10.1126/science.1093857.

    Article  PubMed  Google Scholar 

  • Wakelin, S., et al. (2012). Response of soil microbial communities to contrasted histories of phosphorus fertilisation in pastures. Applied Soil Ecology, 61, 40–48.

    Article  Google Scholar 

  • Ward, N. L., et al. (2009). Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Applied and Environmental Microbiology, 75, 2046–2056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wardle, D. A., & Yeates, G. W. (1993). The dual importance of competition and predation as regulatory forces in terrestrial ecosystems, evidence from decomposer food-webs. Oecologia, 93, 303–306.

    Article  CAS  PubMed  Google Scholar 

  • Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., Van Der Putten, W. H., & Wall, D. H. (2004). Ecological linkages between aboveground and belowground biota. Science, 304, 1629–1633.

    Article  CAS  PubMed  Google Scholar 

  • Zavaleta, E. S., Pasari, J. R., Hulvey, K. B., & Tilman, G. D. (2010). Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proceedings of the National Academy of Sciences, 107, 1443–1446.

    Article  CAS  Google Scholar 

  • Zhang, L.-M., Offre, P. R., He, J.-Z., Verhamme, D. T., Nicol, G. W., & Prosser, J. I. (2010). Autotrophic ammonia oxidation by soil thaumarchaea. Proceedings of the National Academy of Sciences, 107, 17240–17245.

    Article  CAS  Google Scholar 

  • Zhang, L.-M., Hu, H.-W., Shen, J.-P., & He, J.-Z. (2012). Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. The ISME Journal, 6, 1032.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalaivani Nadarajah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nadarajah, K. (2019). Soil Health: The Contribution of Microflora and Microfauna. In: Varma, A., Choudhary, D. (eds) Mycorrhizosphere and Pedogenesis. Springer, Singapore. https://doi.org/10.1007/978-981-13-6480-8_22

Download citation

Publish with us

Policies and ethics