Soil Health: The Contribution of Microflora and Microfauna

  • Kalaivani NadarajahEmail author


Soil is a complex aggregate of both living and non-living components. There is extreme diversity in the community of living organisms that may be found within the soil. The soil living organisms has been divided into both the micro and macrofauna and flora. These living organisms have been implicated in various processes such as nutrient cycles, biological control, soil structure, and the degradation of agrochemicals and pollutants. In a nutshell these organisms enhanced soil fertility and quality. In the recent years the focus of studies have been towards maintaining soil fertility with minimal soil fertilization. This is largely due to the increase in unfertile land that is caused by overuse and total dependence on chemical fertilization that has affected the soil ecosystem. As the biological activity of soil has been connected to the process of soil fertility and quality, understanding the contribution of each of these players in the soil ecosystem is important. Practices that contribute towards enriched microflora and microfauna diversity in an ecosystem should be encouraged to increase diversity, improve soil health, crop health and production. This chapter will deal with the role of microflora and microfauna in soil health and fertility and the various roles played by these organisms in affecting plant productivity in any given agro-ecosystem.


Microflora Microfauna Nutrient cycling Soil health Decomposition Mineralization Solubilization 


  1. Aghighi, S., Shahidi Bonjar, G., & Saadoun, I. (2004). First report of antifungal properties of a new strain of Streptomyces plicatus (strain101) against four Iranian phytopathogenic isolates of Verticillium dahliae, a new horizon in biocontrol agents. Biotechnology (Faisalabad), 3, 90–97.Google Scholar
  2. Agrawal, P. K., Agrawal, S., & Shrivastava, R. (2015). Modern molecular approaches for analyzing microbial diversity from mushroom compost ecosystem. 3Biotech, 5, 853–866.Google Scholar
  3. Angel, R., Claus, P., & Conrad, R. (2012). Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. The ISME Journal, 6, 847.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Balvanera, P., Pfisterer, A. B., Buchmann, N., He, J. S., Nakashizuka, T., Raffaelli, D., & Schmid, B. (2006). Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 9, 1146–1156.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bardgett, R. D., Bowman, W. D., Kaufmann, R., & Schmidt, S. K. (2005). A temporal approach to linking aboveground and belowground ecology. Trends in Ecology & Evolution, 20, 634–641.CrossRefGoogle Scholar
  6. Bates, S. T., Berg-Lyons, D., Caporaso, J. G., Walters, W. A., Knight, R., & Fierer, N. (2011). Examining the global distribution of dominant archaeal populations in soil. The ISME Journal, 5, 908.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Battigelli, J. P., & Berch, S. (2002). Soil Fauna in the sub-boreal spruce (sbs) installations of the long-term soil productivity (ltsp) study of Central British Columbia: One year results for soil Mesofauna and microfauna. British Columbia: Ministry of Forests, Prince George, Prince Rupert and Caribou Forest Regions.Google Scholar
  8. Beare, M., Reddy, M. V., Tian, G., & Srivastava, S. (1997). Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: The role of decomposer biota. Applied Soil Ecology, 6, 87–108.CrossRefGoogle Scholar
  9. Bergmann, G. T., et al. (2011). The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biology and Biochemistry, 43, 1450–1455.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bonkowski, M., & Roy, J. (2005). Soil microbial diversity and soil functioning affect competition among grasses in experimental microcosms. Oecologia, 143, 232–240.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bonkowski, M., Cheng, W., Griffiths, B. S., Alphei, J., & Scheu, S. (2000). Microbial-faunal interactions in the rhizosphere and effects on plant growth §. European Journal of Soil Biology, 36, 135–147.CrossRefGoogle Scholar
  12. Borgonie, G., et al. (2011). Nematoda from the terrestrial deep subsurface of South Africa. Nature, 474, 79.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bradford, M., et al. (2002). Impacts of soil faunal community composition on model grassland ecosystems. Science, 298, 615–618.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Brady, N., & Weil, R. (2008). Soil colloids: Seat of soil chemical and physical acidity. Upper Saddle River: Pearson Education.Google Scholar
  15. Dang, H., Zhang, X., Sun, J., Li, T., Zhang, Z., & Yang, G. (2008). Diversity and spatial distribution of sediment ammonia-oxidizing crenarchaeota in response to estuarine and environmental gradients in the Changjiang Estuary and East China Sea. Microbiology, 154, 2084–2095.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Davis, K. E., Sangwan, P., & Janssen, P. H. (2011). Acidobacteria, Rubrobacteridae and Chloroflexi are abundant among very slow-growing and mini-colony-forming soil bacteria. Environmental Microbiology, 13, 798–805.PubMedCrossRefPubMedCentralGoogle Scholar
  17. De Vries, F. T., & Shade, A. (2013). Controls on soil microbial community stability under climate change. Frontiers in Microbiology, 4, 265.PubMedPubMedCentralCrossRefGoogle Scholar
  18. DeBruyn JM, Nixon LT, Fawaz MN, Johnson AM, Radosevich M (2011) Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Applied and Environmental Microbiology. 05005-05011.Google Scholar
  19. Denton, C. S., Bardgett, R. D., Cook, R., & Hobbs, P. J. (1999). Low amounts of root herbivory positively influence the rhizosphere microbial community in a temperate grassland soil. Soil Biology and Biochemistry, 31, 155–165.CrossRefGoogle Scholar
  20. Dhar, D. W., Prasanna, R., & Singh, B. (2007). Comparative performance of three carrier based blue green algal biofertilizers for sustainable rice cultivation. Journal of Sustainable Agriculture, 30, 41–50.CrossRefGoogle Scholar
  21. Dojka, M. A., Harris, J. K., & Pace, N. R. (2000). Expanding the known diversity and environmental distribution of an uncultured phylogenetic division of bacteria. Applied and Environmental Microbiology, 66, 1617–1621.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Duffy, J. E., Cardinale, B. J., France, K. E., McIntyre, P. B., Thébault, E., & Loreau, M. (2007). The functional role of biodiversity in ecosystems: Incorporating trophic complexity. Ecology Letters, 10, 522–538.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Eilers, K. G., Lauber, C. L., Knight, R., & Fierer, N. (2010). Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biology and Biochemistry, 42, 896–903.CrossRefGoogle Scholar
  24. Erguder, T. H., Boon, N., Wittebolle, L., Marzorati, M., & Verstraete, W. (2009). Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiology Reviews, 33, 855–869.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Ferris, H., Venette, R., Van Der Meulen, H., & Lau, S. (1998). Nitrogen mineralization by bacterial-feeding nematodes: Verification and measurement. Plant and Soil, 203, 159–171.CrossRefGoogle Scholar
  26. Fierer, N., Bradford, M. A., & Jackson, R. B. (2007). Toward an ecological classification of soil bacteria. Ecology, 88, 1354–1364.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A., & Cleveland, C. C. (2009). Global patterns in belowground communities. Ecology Letters, 12, 1238–1249.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Franco-Correa, M., Quintana, A., Duque, C., Suarez, C., Rodríguez, M. X., & Barea, J.-M. (2010). Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Applied Soil Ecology, 45, 209–217.CrossRefGoogle Scholar
  29. Garrity, G. M., & Holt, J. G. (2001). The road map to the manual. In D. R. Boone, R. W. Castenholz, & G. M. Garrity (Eds.), Bergey’s manual of systematic bacteriology (Vol. 1, 2nd ed., pp. 119–166). Springer: New York.CrossRefGoogle Scholar
  30. Goldfarb, K. C., et al. (2011). Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Frontiers in Microbiology, 2, 94.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Govaerts, B., et al. (2007). Influence of tillage, residue management, and crop rotation on soil microbial biomass and catabolic diversity. Applied Soil Ecology, 37, 18–30.CrossRefGoogle Scholar
  32. Gremion, F., Chatzinotas, A., & Harms, H. (2003). Actinobacteria might be a dominant part of the metabolically active bacteria in heavy-metal contaminated bulk and rhizosphere soil. Environmental Microbiology, 5, 896–907.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Griffiths, B. S., Ritz, K., Bardgett, R. D., Cook, R., Christensen, S., Ekelund, F., Sorensen, S. J., Baath, E., Bloem, J., de Ruiter, P. C., Dolfing, J., & Nicolardot, B. (2000). Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: An examination of the biodiversity-ecosystem function relationship. Oikos, 90, 279–294.CrossRefGoogle Scholar
  34. Griffiths, B. S., Ritz, K., Wheatley, R., Kuan, H. L., Boag, B., Christensen, S., Ekelund, F., Sorensen, S. J., Muller, S., & Bloem, J. (2001). An examination of the biodiversity-ecosystem function relationship in arable soil microbial communities. Soil Biology and Biochemistry, 33, 1713–1722.CrossRefGoogle Scholar
  35. He, J., Shen, J., Lm, Z., Zhu, Y., Zheng, Y., Xu, M., & Di, H. (2007). Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environmental Microbiology, 9, 2364–2374.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Hector, A., & Bagchi, R. (2007). Biodiversity and ecosystem multifunctionality. Nature, 448, 188.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Hibbett, D. S., et al. (2007). A higher-level phylogenetic classification of the Fungi. Mycological Research, 111, 509–547.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Holmes, A. J., Bowyer, J., Holley, M. P., O’donoghue, M., Montgomery, M., & Gillings, M. R. (2000). Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils. FEMS Microbiology Ecology, 33, 111–120.Google Scholar
  39. Hoorman, J. J. (2011). The role of soil protozoa and nematodes Fact sheet: agriculture and natural resources (pp. 1–5). Colombus: The Ohio State University Extension.Google Scholar
  40. Hugenholtz, P., Goebel, B. M., & Pace, N. R. (1998). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. Journal of Bacteriology, 180, 4765–4774.PubMedPubMedCentralGoogle Scholar
  41. Hunt, H., & Wall, D. (2002). Modelling the effects of loss of soil biodiversity on ecosystem function. Global Change Biology, 8, 33–50.CrossRefGoogle Scholar
  42. Ingham, R. E., Trofymow, J., Ingham, E. R., & Coleman, D. C. (1985). Interactions of bacteria, fungi, and their nematode grazers: Effects on nutrient cycling and plant growth. Ecological Monographs, 55, 119–140.CrossRefGoogle Scholar
  43. Janssen, P. H. (2006). Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Applied and Environmental Microbiology, 72, 1719–1728.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Janssen, P. H., Yates, P. S., Grinton, B. E., Taylor, P. M., & Sait, M. (2002). Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Applied and Environmental Microbiology, 68, 2391–2396.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Jia, Z., & Conrad, R. (2009). Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environmental Microbiology, 11, 1658–1671.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Jones, R. T., Robeson, M. S., Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. The ISME Journal, 3, 442.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Joseph, S. J., Hugenholtz, P., Sangwan, P., Osborne, C. A., & Janssen, P. H. (2003). Laboratory cultivation of widespread and previously uncultured soil bacteria. Applied and Environmental Microbiology, 69, 7210–7215.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kaushik, B. (2004). Use of blue-green algae and Azolla biofertilizers in rice cultivation and their influence on soil properties. In Microbiology and biotechnology for sustainable development (pp. 166–184). New Delhi: CBS.Google Scholar
  49. Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A., & Kuramae, E. E. (2016). The ecology of Acidobacteria: Moving beyond genes and genomes. Frontiers in Microbiology, 7, 744.PubMedPubMedCentralGoogle Scholar
  50. Kirk, P., Cannon, P., Minter, D., & Stalpers, J. (2008). Dictionary of the Fungi (Vol. 396). Wallingford: CABI.Google Scholar
  51. Könneke, M., Bernhard, A. E., José, R., Walker, C. B., Waterbury, J. B., & Stahl, D. A. (2005). Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437, 543.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Kuzyakov, Y. (2002). Factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science, 165, 382–396.CrossRefGoogle Scholar
  53. Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75, 5111–5120.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lee, S.-H., Ka, J.-O., & Cho, J.-C. (2008). Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil. FEMS Microbiology Letters, 285, 263–269.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Leininger, S., et al. (2006). Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 442, 806.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lindahl, B. D., Ihrmark, K., Boberg, J., Trumbore, S. E., Högberg, P., Stenlid, J., & Finlay, R. D. (2007). Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytologist, 173, 611–620.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Liu, Y. J, Hodson, M. C., & Hall, B. D. (2006). Loss of the flagellum happened only once in the fungal lineage: Phylogenetic structure of kingdom Fungi inferred from RNA polymerase II subunit genes. BMC Evolutionary Biology, 6: 74.–2148/6/74
  58. Lüdemann, H., & Conrad, R. (2000). Molecular retrieval of large 16S rRNA gene fragments from an Italian rice paddy soil affiliated with the class Actinobacteria. Systematic and Applied Microbiology, 23, 582–584.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Lutzoni, F., Pagel, M., & Reeb, V. (2001). Major fungal lineages are derived from lichen symbiotic ancestors. Nature, 411, 937.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Mäder, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., & Niggli, U. (2002). Soil fertility and biodiversity in organic farming. Science, 296, 1694–1697.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Maestre, F. T., et al. (2012). Plant species richness and ecosystem multifunctionality in global drylands. Science, 335, 214–218.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Maha, A. A. L. (2013). Ecological role of animal diversity in soil system (A Case Study at El- Rawakeeb Dry Land Research Station, Sudan) 1st Annual International Interdisciplinary Conference, AIIC 2013, 24–26 April, Azores, Portugal – Proceedings, pp. 345–350.Google Scholar
  63. Maherali, H., & Klironomos, J. N. (2007). Influence of phylogeny on fungal community assembly and ecosystem functioning. Science, 316, 1746–1748.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Mukhtar, H., Lin, Y.-P., & Anthony, J. (2017). Ammonia oxidizing archaea and bacteria in east Asian paddy soils—A mini review. Environments, 4, 84.CrossRefGoogle Scholar
  65. Nacke, H., et al. (2011). Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One, 6, e17000.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Nannipieri, P., Grego, S., Ceccanti, B., Bollag, J., & Stotzky, G. (1990). Ecological significance of the biological activity in soil. Soil Biochemistry, 6, 293–355.Google Scholar
  67. Neher, D. A. (2001). Role of nematodes in soil health and their use as indicators. Journal of Nematology, 33, 161.PubMedPubMedCentralGoogle Scholar
  68. Nemergut, D. R., et al. (2011). Global patterns in the biogeography of bacterial taxa. Environmental Microbiology, 13, 135–144.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Newton, L., & Chantal, H. (2010). Soil Biology of the Canadian Prairies. Agricultural Soils of the Prairies. PS&C. Prairie Soils and Crops Journal, 3, 16–24.Google Scholar
  70. Nielsen, M., & Winding, A. (2002). Microorganisms as indicators of soil health. National Environmental Research Institute, Denmark Tech Rep:388.Google Scholar
  71. Offre, P., Prosser, J. I., & Nicol, G. W. (2009). Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene. FEMS Microbiology Ecology, 70, 99–108.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Osler, G. H., & Sommerkorn, M. (2007). Toward a complete soil C and N cycle: Incorporating the soil fauna. Ecology, 88, 1611–1621.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Plassard, C., & Dell, B. (2010). Phosphorus nutrition of mycorrhizal trees. Tree Physiology, 30, 1129–1139.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Prosser, J. I., & Nicol, G. W. (2012). Archaeal and bacterial ammonia-oxidisers in soil: The quest for niche specialisation and differentiation. Trends in Microbiology, 20, 523–531.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Richardson, A. E., Barea, J.-M., McNeill, A. M., & Prigent-Combaret, C. (2009). Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil, 321, 305–339.CrossRefGoogle Scholar
  76. Rincon-Florez, V. A., Carvalhais, L. C., & Schenk, P. M. (2013). Culture-independent molecular tools for soil and rhizosphere microbiology. Diversity, 5, 581–612.CrossRefGoogle Scholar
  77. Roesch, L. F., et al. (2007). Pyrosequencing enumerates and contrasts soil microbial diversity. The ISME Journal, 1, 283.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Roger, P.-A., & Reynaud, P.-A. (1982). Free—Living blue—Green algae in tropical soils. In Microbiology of tropical soils and plant productivity (pp. 147–168). Dordrecht: Springer.CrossRefGoogle Scholar
  79. Saadatnia, H., & Riahi, H. (2009). Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants. Plant, Soil and Environment, 55, 207–212.CrossRefGoogle Scholar
  80. Sahu, D., Priyadarshani, I., & Rath, B. (2012). Cyanobacteria–as potential biofertilizer. CIBTech Journal of Microbiology, 1, 20–26.Google Scholar
  81. Sangwan, P., Chen, X., Hugenholtz, P., & Janssen, P. H. (2004). Chthoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, Spartobacteria classis nov., of the phylum Verrucomicrobia. Applied and Environmental Microbiology, 70, 5875–5881.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Schimel, J. P., & Bennett, J. (2004). Nitrogen mineralization: Challenges of a changing paradigm. Ecology, 85, 591–602.CrossRefGoogle Scholar
  83. Schrey, S. D., Schellhammer, M., Ecke, M., Hampp, R., & Tarkka, M. T. (2005). Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytologist, 168, 205–216.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Seastedt, T., James, S., & Todd, T. (1988). Interactions among soil invertebrates, microbes and plant growth in the tallgrass prairie. Agriculture, Ecosystems & Environment, 24, 219–228.CrossRefGoogle Scholar
  85. Simard, S. W., Beiler, K. J., Bingham, M. A., Deslippe, J. R., Philip, L. J., & Teste, F. P. (2012). Mycorrhizal networks: Mechanisms, ecology and modelling. Fungal Biology Reviews, 26, 39–60.CrossRefGoogle Scholar
  86. Sohlenius, B., Boström, S., & Sandor, A. (1988). Carbon and nitrogen budgets of nematodes in arable soil. Biology and Fertility of Soils, 6, 1–8.CrossRefGoogle Scholar
  87. Spain, A. M., Krumholz, L. R., & Elshahed, M. S. (2009). Abundance, composition, diversity and novelty of soil Proteobacteria. The ISME Journal, 3, 992.PubMedCrossRefPubMedCentralGoogle Scholar
  88. Sugiyarto, S. (2009). The effect of mulching technology to enhance the diversity of soil macroinvertebrates in Sengon-based agroforestry systems. Biodiversitas Journal of Biological Diversity, 10, 129–133.CrossRefGoogle Scholar
  89. Tarkka, M. T., & Frey-Klett, P. (2008). Mycorrhiza helper bacteria. In Mycorrhiza – State of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics (pp. 113–132). Heidelberg: Springer.Google Scholar
  90. Terkina, I., Parfenova, V., & Ahn, T. (2006). Antagonistic activity of actinomycetes of Lake Baikal. Applied Biochemistry and Microbiology, 42, 173–176.CrossRefGoogle Scholar
  91. Teste, F. P., Simard, S. W., & Durall, D. M. (2009). Role of mycorrhizal networks and tree proximity in ectomycorrhizal colonization of planted seedlings. Fungal Ecology, 2, 21–30.CrossRefGoogle Scholar
  92. Thomas, W. C. (2013). Role of arthropods in maintaining soil fertility. Agriculture, 3, 629–659. CrossRefGoogle Scholar
  93. Tourna, M., Freitag, T. E., Nicol, G. W., & Prosser, J. I. (2008). Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environmental Microbiology, 10, 1357–1364.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Tourna, M., et al. (2011). Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proceedings of the National Academy of Sciences, 108, 8420–8425.CrossRefGoogle Scholar
  95. Treseder, K. K., Kivlin, S. N., & Hawkes, C. V. (2011). Evolutionary trade-offs among decomposers determine responses to nitrogen enrichment. Ecology Letters, 14, 933–938.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Treusch, A. H., Leininger, S., Kletzin, A., Schuster, S. C., Klenk, H. P., & Schleper, C. (2005). Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environmental Microbiology, 7, 1985–1995.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Trofymow, L., & Coleman, D. (1982). The role of bacterivorous and fungivorous nematodes in cellulose and chitin decomposition. In Nematodes in soil ecosystems (pp. 111–138). Austin: University of Texas.Google Scholar
  98. Uroz, S., Calvaruso, C., Turpault, M.-P., Pierrat, J.-C., Mustin, C., & Frey-Klett, P. (2007). Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Applied and Environmental Microbiology, 73, 3019–3027.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Van Der Heijden, M. G., Bardgett, R. D., & Van Straalen, N. M. (2008). The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296–310.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen, J. A., et al. (2004). Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304, 66–74. Scholar
  101. Wakelin, S., et al. (2012). Response of soil microbial communities to contrasted histories of phosphorus fertilisation in pastures. Applied Soil Ecology, 61, 40–48.CrossRefGoogle Scholar
  102. Ward, N. L., et al. (2009). Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Applied and Environmental Microbiology, 75, 2046–2056.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Wardle, D. A., & Yeates, G. W. (1993). The dual importance of competition and predation as regulatory forces in terrestrial ecosystems, evidence from decomposer food-webs. Oecologia, 93, 303–306.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., Van Der Putten, W. H., & Wall, D. H. (2004). Ecological linkages between aboveground and belowground biota. Science, 304, 1629–1633.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Zavaleta, E. S., Pasari, J. R., Hulvey, K. B., & Tilman, G. D. (2010). Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proceedings of the National Academy of Sciences, 107, 1443–1446.CrossRefGoogle Scholar
  106. Zhang, L.-M., Offre, P. R., He, J.-Z., Verhamme, D. T., Nicol, G. W., & Prosser, J. I. (2010). Autotrophic ammonia oxidation by soil thaumarchaea. Proceedings of the National Academy of Sciences, 107, 17240–17245.CrossRefGoogle Scholar
  107. Zhang, L.-M., Hu, H.-W., Shen, J.-P., & He, J.-Z. (2012). Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. The ISME Journal, 6, 1032.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Environmental and Natural Resource Sciences, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations