Microbial Interactions in Soil Formation and Nutrient Cycling

  • R. Koshila Ravi
  • S. Anusuya
  • M. Balachandar
  • T. Muthukumar


Mineralization by soil micro-organisms plays an important role in the environment as it releases trapped mineral nutrients (phosphorus, potassium, magnesium, calcium, and iron) required for plant growth. Ectomycorrhizosphere hosts diverse microorganisms (bacteria and fungi) that can stimulate each other forming specific interface between soil and trees. Fungi are known to cause geochemical changes and have a major role in the plant-root region, soil and in rock and mineral habitats. Therefore they have different roles in nutrient cycling that keeps the soil in good condition for plant growth. Majority of ectomycorrhizal root tips occur in mineral horizons exploiting the nutrient-rich substrates and helps to assimilate and translocate the nutrients. The extramatrical mycelia of ectomycorrhizal fungi acquire carbon from the soil through the enzymatic breakdown of organic matter and from tree photosynthates. This contributes to the association between weathering of minerals in the soil and photosynthetically-assimilated carbon acquired from trees. The microorganisms residing at mycorrhizosphere are capable of solubilizing the organic phosphate and other organic nutrients and can also mobilize iron. The structure and functions of the bacterial community involved in the mineral weathering are also determined by ectomycorrhizosphere. Plants, in turn, alter the soil structure through their root exudates favoring the activity of microbial communities. This chapter addresses the significance of mineral weathering by microbial interactions and the contribution of plant-microbial communities on soil formation through nutrient cycling which further improves the soil functionality.


Biomineralization Bioweathering Glomalin Macroaggregates Mycorrhizosphere Pedosphere Symbiosis 


  1. Alori, E. T., Glick, B. R., & Babalola, O. O. (2017). Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology, 8, 971. Scholar
  2. Altieri, M. A. (2004). Linking ecologists and traditional farmers in the search for sustainable agriculture. Frontiers in Ecology and the Environment, 2, 35–42.CrossRefGoogle Scholar
  3. Ascaso, C., Wierzchos, J., Souza-Egipsy, V., & De los RÃos A. (2002). In situ evaluation of the biodeteriorating action of microorganisms and the effects of biocides on carbonate rock of the Jeronimos Monastery (Lisbon). International Biodeterioration Biodegradation, 49, 1–12.CrossRefGoogle Scholar
  4. Augé, R. M. (2004). Arbuscular mycorrhizae and soil/plant water relations. Canadian Journal of Soil Science, 84, 373–381.CrossRefGoogle Scholar
  5. Babalola, O. O., & Glick, B. R. (2012). The use of microbial inoculants in African agriculture: Current practice and future prospects. Journal of Food, Agriculture and Environment, 10, 540–549.Google Scholar
  6. Bago, B., Vierheilig, H., Piché, Y., & Azcón-Aguilar, C. (1996). Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic cultures. The New Phytologist, 133, 273–280.PubMedCrossRefGoogle Scholar
  7. Banfield, J. F., Barker, W. W., Welch, S. A., & Taunton, A. (1999). Biological impact on mineral dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere. Proceedings of the National Academy of Sciences of the United States of America, 96, 3404–3411.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bedini, S., Pellegrino, E., Avio, L., Pellegrini, S., Bazzoffi, P., Argese, E., & Giovannetti, M. (2009). Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biology and Biochemistry, 41, 1491–1496.CrossRefGoogle Scholar
  9. Begonha, A. (2009). Mineralogical study of the deterioration of granite stones of two Portuguese churches and characterization of the salt solutions in the porous network by the presence of diatoms. Materials Characterization, 60, 621–635.CrossRefGoogle Scholar
  10. Belnap, J., & Lange, O. L. (2003). Biological soil crusts: Structure, function, and management. In I. T. Baldwin, M. M. Caldwell, G. Heldmaier, O. L. Lange, H. A. Mooney, E.-D. Schulze, & U. Sommer (Eds.), Ecological studies series 150 (Vol. 150, pp. 1–503). Berlin: Springer.Google Scholar
  11. Belnap, J., Büdel, B., & Lange, O. L. (2001). Biological soil crusts: Characteristics and distribution. In J. Belnap & O. L. Lange (Eds.), Biological soil crusts: Structure, function, and management (Ecological studies analysis and synthesis, Vol. 150, pp. 3–30). Berlin/Heidelberg: Springer.Google Scholar
  12. Bennett, P. C., Rogers, J. R., Choi, W. J., & Hiebert, F. K. (2001). Silicates, silicate weathering, and microbial ecology. Geomicrobiology Journal, 18, 3–19.CrossRefGoogle Scholar
  13. Berg, B., & McClaugherty, C. (2014). Decomposition as a process: Some main features. In B. Berg & C. McClaugherty (Eds.), Plant litter: decomposition, humus formation, carbon sequestration (pp. 11–34). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  14. Bin, L., Ye, C., Lijun, Z., & Ruidong, Y. (2008). Effect of microbial weathering on carbonate rocks. Earth Science Frontiers, 15, 90–99.CrossRefGoogle Scholar
  15. Bonfante, P., & Anca, I. A. (2009). Plants, mycorrhizal fungi, and bacteria: A network of interactions. Annual Review of Microbiology, 63, 363–383.PubMedCrossRefGoogle Scholar
  16. Bonneville, S., Smits, M. M., Brown, A., Harrington, J., Leake, J. R., Brydson, R., & Benning, L. G. (2009). Plant-driven fungal weathering: Early stages of mineral alteration at the nanometer scale. Geology, 37, 615–618.CrossRefGoogle Scholar
  17. Borie, F., Rubio, R., & Morales, A. (2008). Arbuscular mycorrhizal fungi and soil aggregation. Journal of Soil Science and Plant Nutrition, 8, 9–18.Google Scholar
  18. Brantley, S. L., Megonigal, J. P., Scatena, F. N., Balogh-Brunstad, Z., Barnes, R. T., Bruns, M. A., & Yoo, K. (2011). Twelve testable hypotheses on the geobiology of weathering. Geobiology, 9, 140–165.PubMedGoogle Scholar
  19. Bratteler, M., Lexer, C., & Widmer, A. (2006). Genetic architecture of traits associated with serpentine adaptation of Silene vulgaris. Journal of Evolutionary Biology, 19, 1149–1156.PubMedCrossRefGoogle Scholar
  20. Bressan, M., Roncato, M. A., Bellvert, F., Comte, G., Haichar, F. Z., Achouak, W., & Berge, O. (2009). Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. The ISME Journal, 3, 1243–1257.PubMedCrossRefGoogle Scholar
  21. Bücking, H., & Kafle, A. (2015). Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: Current knowledge and research gaps. Agronomy, 5, 587–612.CrossRefGoogle Scholar
  22. Burford, E. P., Fomina, M., & Gadd, G. M. (2003). Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineralogical Magazine, 67, 1127–1155.CrossRefGoogle Scholar
  23. Butler, J. L., Williams, M. A., Bottomley, P. J., & Myrold, D. D. (2003). Microbial community dynamics associated with rhizosphere carbon flow. Applied and Environmental Microbiology, 69, 6793–6800.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Calvaruso, C., Turpault, M. P., & Frey-Klett, P. (2006). Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: A budgeting analysis. Applied and Environmental Microbiology, 72, 1258–1266.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Calvaruso, C., Turpault, M. P., Leclerc, E., & Frey-Klett, P. (2007). Impact of ectomycorrhizosphere on the functional diversity of soil bacterial and fungal communities from a forest stand in relation to nutrient mobilization processes. Microbial Ecology, 54, 567–577.PubMedCrossRefGoogle Scholar
  26. Calvaruso, C., Mareschal, L., Turpault, M. P., & Leclerc, E. (2009). Rapid clay weathering in the rhizosphere of Norway spruce and oak in an acid forest ecosystem. Soil Science Society of America Journal, 73, 331–338.CrossRefGoogle Scholar
  27. Carson, J. K., Campbell, L., Rooney, D., Clipson, N., & Gleeson, D. B. (2009). Minerals in soil select distinct bacterial communities in their microhabitats. FEMS Microbiology Ecology, 67, 381–388.PubMedCrossRefGoogle Scholar
  28. Certini, G., Campbell, C. D., & Edwards, A. C. (2004). Rock fragments in soil support a different microbial community from the fine earth. Soil Biology and Biochemistry, 36, 1119–1128.CrossRefGoogle Scholar
  29. Chadwick, O., Derry, L., Vitousek, P., Huebert, B., & Hedin, L. (1999). Changing sources of nutrients during four million years of ecosystem development. Nature, 397, 491–497.CrossRefGoogle Scholar
  30. Chen, J., Blume, H.-P., & Beyer, L. (2000). Weathering of rocks induced by lichen colonization – A review. Catena, 39, 121–146.CrossRefGoogle Scholar
  31. Chen, W., Sheng, X.-F., He, L.-Y., & Huang, Z. (2015). Rhizobium yantingense sp. nov., a mineral-weathering bacterium. International Journal of Systematic and Evolutionary Microbiology, 65, 412–417.PubMedCrossRefGoogle Scholar
  32. Clark, R. B., & Zeto, S. K. (2000). Mineral acquisition by arbuscular mycorrhizal plants. Journal of Plant Nutrition, 23, 867–902.CrossRefGoogle Scholar
  33. Collignon, C., Uroz, S., Turpault, M. P., & Frey-Klett, P. (2011). Seasons differently impact the structure of mineral weathering bacterial communities in beech and spruce stands. Soil Biology and Biochemistry, 43, 2012–2022.CrossRefGoogle Scholar
  34. Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., & Paul, E. (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 19, 988–995.PubMedCrossRefGoogle Scholar
  35. David, P., Raj, R. S., Linda, R., & Rhema, S. B. (2014). Molecular characterization of phosphate solubilizing bacteria (PSB) and plant growth promoting rhizobacteria (PGPR) from pristine soils. International Journal of Innovative Science Engineering and Technology, 1, 317–324.Google Scholar
  36. Daynes, C. N., Field, D. J., Saleeba, J. A., Cole, M. A., & McGee, P. A. (2013). Development and stabilisation of soil structure via interactions between organic matter, arbuscular mycorrhizal fungi and plant roots. Soil Biology and Biochemistry, 57, 683–694.CrossRefGoogle Scholar
  37. de Bruijn, F. J. (2015). Biological nitrogen fixation. In B. Lugtenberg (Ed.), Principles of plant-microbe interactions (pp. 215–224). Cham: Springer International.Google Scholar
  38. De los Ríos, A., Wierzchos, J., & Ascaso, C. (2002). Microhabitats and chemical microenvironments under saxicolous lichens growing on granite. Microbial Ecology, 43, 181–188.PubMedCrossRefGoogle Scholar
  39. Denef, K., & Six, J. (2005). Clay mineralogy determines the importance of biological versus abiotic processes for macroaggregate formation and stabilization. European Journal of Soil Science, 56, 469–479.CrossRefGoogle Scholar
  40. Díaz-Zorita, M., Perfect, E., & Grove, J. H. (2002). Disruptive methods for assessing soil structure. Soil and Tillage Research, 64, 3–22.CrossRefGoogle Scholar
  41. Dixon, R., & Kahn, D. (2004). Genetic regulation of biological nitrogen fixation. Nature Reviews. Microbiology, 2, 621–631.PubMedCrossRefGoogle Scholar
  42. Dominati, E. J., Patterson, M. G., & Mackay, A. D. (2010). A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecological Economics, 69, 1858–1868.CrossRefGoogle Scholar
  43. Dos Santos, P. C., Fang, Z., Mason, S. W., Setubal, J. C., & Dixon, R. (2012). Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics, 13, 162–162.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Driver, J. D., Holben, W. E., & Rillig, M. C. (2005). Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 37, 101–106.CrossRefGoogle Scholar
  45. Duc, L., Noll, M., Meier, B. E., Burgmann, H., & Zeyer, J. (2009). High diversity of diazotrophs in the forefield of a receding alpine glacier. Microbial Ecology, 57, 179–190.PubMedCrossRefGoogle Scholar
  46. Dutton, M. V., & Evans, C. S. (1996). Oxalate production by fungi: Its role in pathogenicity and ecology in the soil environment. Canadian Journal of Microbiology, 42, 881–895.CrossRefGoogle Scholar
  47. Favero-Longo, S. E., Turci, F., Tomatis, M., Castelli, D., Bonfante, P., Hochella, M. F., Piervittori, R., & Fubini, B. (2005). Chrysotile asbestos is progressively converted into a non-fibrous amorphous material by the chelating action of lichen metabolites. Journal of Environmental Monitoring, 7, 764–766.PubMedCrossRefGoogle Scholar
  48. Ferrol, N., & Pérez-Tienda, J. (2009). Coordinated nutrient exchange in arbuscular mycorrhiza interface. In C. Azcon-Aguilar, J. M. Barea, S. Gianinazzi, & V. Gianinazzi-Pearson (Eds.), Mycorrhizas: Functional processes and ecological impact (pp. 73–87). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  49. Fierer, N., & Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 103, 626–631.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Fokom, R., Adamou, S., Teugwa, M. C., Boyogueno, A. D. B., Nana, W. L., Ngonkeu, M. E. L., Tchamen, N. S., Nwaga, D., Tsala Ndzomo, G., & Amvam Zollo, P. H. (2012). Glomalin related soil protein, carbon, nitrogen and soil aggregate stability as affected by land use variation in the humid forest zone of south Cameroon. Soil and Tillage Research, 120, 69–75.CrossRefGoogle Scholar
  51. Fomina, M., Charnock, J. M., Hillier, S., Alexander, I. J., & Gadd, G. M. (2006). Zinc phosphate transformations by the Paxillus involutus/pine ectomycorrhizal association. Microbial Ecology, 52, 322–333.PubMedCrossRefGoogle Scholar
  52. Fontaine, S., Henault, C., Aamor, A., Bdioui, N., Bloor, J. M. G., Maire, V., Mary, B., Revaillot, S., & Maron, P. A. (2011). Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biology and Biochemistry, 43, 86–96.CrossRefGoogle Scholar
  53. Fransson, A.-M., Valeur, I., & Wallander, I. (2004). The wood-decaying fungus Hygrophoropsis aurantiaca increases P availability in acid forest humus soil while N addition hampers this effect. Soil Biology and Biochemistry, 36, 1699–1705.CrossRefGoogle Scholar
  54. Gadd, G. M. (2007). Geomycology: Biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research, 111, 3–49.PubMedCrossRefGoogle Scholar
  55. Gadd, G. M. (2017). Fungi, rocks, and minerals. Elements, 13, 171–176.CrossRefGoogle Scholar
  56. Garcia-Pichel, F., Johnson, S. L., Youngkin, D., & Belnap, J. (2003). Small-scale vertical distribution of bacterial biomass and diversity in biological soil crusts from arid lands in the Colorado Plateau. Microbial Ecology, 46, 312–321.PubMedCrossRefGoogle Scholar
  57. Gillespie, A. W., Farrell, R. E., Walley, F. L., Ross, A. R. S., Leinweber, P., Eckhardt, K.-U., Regier, T., & Blyth, R. I. R. (2011). Glomalin-related soil protein contains non-mycorrhizal-related heat-stable proteins, lipids and humic materials. Soil Biology and Biochemistry, 43, 766–777.CrossRefGoogle Scholar
  58. Gleeson, D. B., Clipson, N. J. W., Melville, K., Gadd, G. M., & McDermott, F. P. (2005). Mineralogical control of fungal community structure in a weathered pegmatitic granite. Microbial Ecology, 50, 360–368.PubMedCrossRefGoogle Scholar
  59. Gorbushina, A. A. (2007). Life on the rocks. Environmental Microbiology, 9, 1613–1631.PubMedCrossRefGoogle Scholar
  60. Gregory, A. S., Watts, C. W., Whalley, W. R., Kuan, H. L., Griffiths, B. S., Hallett, P. D., & Whitmore, A. P. (2007). Physical resilience of soil to field compaction and the interactions with plant growth and microbial community structure. European Journal of Soil Science, 58, 1221–1232.CrossRefGoogle Scholar
  61. Gulati, A., Rahi, P., & Vyas, P. (2008). Characterization of phosphate-solubilizing fluorescent pseudomonads from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas. Current Microbiology, 56, 73–79.PubMedCrossRefGoogle Scholar
  62. Harrison, M. J. (2012). Cellular programs for arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology, 15, 691–698.PubMedCrossRefGoogle Scholar
  63. Hartmann, J., & Moosdorf, N. (2011). Chemical weathering rates of silicate dominated lithological classes and associated liberation rates of phosphorus on the Japanese Archipelago-implications for global scale analysis. Chemical Geology, 287, 125–157.CrossRefGoogle Scholar
  64. Hayat, R., Ali, S., Amara, U., Khalid, R., & Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: A review. Annales de Microbiologie, 60, 579–598.CrossRefGoogle Scholar
  65. Hayatsu, M., Tago, K., & Saito, M. (2008). Various players in the nitrogen cycle: Diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Science & Plant Nutrition, 54, 33–45.CrossRefGoogle Scholar
  66. Helfrich, M., Ludwig, B., Thoms, C., Gleixner, G., & Flessa, H. (2015). The role of soil fungi and bacteria in plant litter decomposition and macroaggregate formation determined using phospholipid fatty acids. Applied Soil Ecology, 96, 261–264.CrossRefGoogle Scholar
  67. Hoffland, E., Giesler, R., Jongmans, T., & van Breeman, N. (2002). Increasing feldspar tunneling by fungi across a North Sweden podzol chronosequence. Ecosystems, 5, 11–22.CrossRefGoogle Scholar
  68. Hoffland, E., Kuyper, T. W., Wallander, H., Plassard, C., Gorbushina, A. A., Haselwandter, K., Holmström, S., Landeweert, R., Lundström, U. S., Rosling, A., Sen, R., Smits, M. M., van Hees, P., & van Breemen, N. (2004). The role of fungi in weathering. Frontiers in Ecology and the Environment, 2, 258–264.CrossRefGoogle Scholar
  69. Huang, J., Sheng, X. F., Xi, J., He, L. Y., Huang, Z., Wang, Q., & Zhang, Z. D. (2014). Depth-related changes in community structure of culturable mineral weathering bacteria and in weathering patterns caused by them along two contrasting soil profiles. Applied and Environmental Microbiology, 80, 29–42.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Jansa, J., Mozafar, A., & Frossard, E. (2003). Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie, 23, 481–488.CrossRefGoogle Scholar
  71. Jonathan, J. H., & Javier, M. G. (2006). Bradford reactive soil protein in Appalachian soils: Distribution and response to incubation, extraction reagent and tannins. Plant and Soil, 286, 339–356.CrossRefGoogle Scholar
  72. Jorquera, M. A., Hernández, M. T., Rengel, Z., Marschner, P., & Luz Mora, M. (2008). Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biology and Fertility of Soils, 44, 1025–1034.CrossRefGoogle Scholar
  73. Kobierska, F., Jonas, T., Magnusson, J., Zappa, M., Bavay, M., Bosshard, T., Paul, F., & Bernasconi, S. (2011). Climate change effects on snow melt and discharge of a partly glacierized watershed in Central Switzerland (Soil Trec Critical Zone Observatory). Applied Geochemistry, 26, 60–62.CrossRefGoogle Scholar
  74. Koele, N., Dickie, I. A., Blum, J. D., Gleason, J. D., & de Graaf, L. (2014). Ecological significance of mineral weathering in ectomycorrhizal and arbuscular mycorrhizal ecosystems from a field-based comparison. Soil Biology and Biochemistry, 69, 63–70.CrossRefGoogle Scholar
  75. Kumar, S., Bauddh, K., Barman, S. C., & Singh, R. P. (2014). Amendments of microbial bio fertilizers and organic substances reduces requirement of urea and DAP with enhanced nutrient availability and productivity of wheat (Triticum aestivum L.). Ecological Engineering, 71, 432–437.CrossRefGoogle Scholar
  76. Kuske, C. R., Yaeger, C. M., Johnson, S., Ticknor, O. L., & Belnap, J. (2012). Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands. The ISME Journal, 6, 886–897.PubMedCrossRefGoogle Scholar
  77. Lambers, H., Mougel, C., Jaillard, B., & Hinsinger, P. (2009). Plant–microbe–soil interactions in the rhizosphere: An evolutionary perspective. Plant and Soil, 321, 83–115.CrossRefGoogle Scholar
  78. Landeweert, R., Hoffland, E., Finlay, R. D., Kuyper, T. W., & van Breemen, N. (2001). Linking plants to rocks: Ectomycorrhizal fungi mobilize nutrients from minerals. Trends in Ecology & Evolution, 16, 248–254.CrossRefGoogle Scholar
  79. Liang, C., Zhang, X., & Balser, T. C. (2007). Net microbial amino sugars accumulation process in soil as influenced by different plant material inputs. Biology and Fertility of Soils, 44, 1–7.CrossRefGoogle Scholar
  80. Lindahl, B. D., Ihrmark, K., Boberg, J., Trumbore, S. E., Hogberg, P., Stenlid, J., & Finlay, R. D. (2007). Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. The New Phytologist, 173, 611–620.PubMedCrossRefGoogle Scholar
  81. Liu, A., Hamel, C., Hamilton, R. I., Ma, B. L., & Smith, D. L. (2000). Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza, 9, 331–336.CrossRefGoogle Scholar
  82. Lopez, B. R., Bashan, Y., & Bacilio, M. (2011). Endophytic bacteria of Mammillaria fraileana, an endemic rock-colonizing cactus of the Southern Sonoran Desert. Archives of Microbiology, 193, 527–541.PubMedCrossRefGoogle Scholar
  83. Lovelock, C. E., Wright, S. E., & Nichols, K. A. (2004). Using glomalin as an indicator for arbuscular mycorrhizal hyphal growth: An example from a tropical rainforest soil. Soil Biology and Biochemistry, 36, 1009–1012.CrossRefGoogle Scholar
  84. Männistö, M. K., & Häggblom, M. M. (2006). Characterization of psychrotolerant heterotrophic bacteria from Finnish Lapland. Systematic and Applied Microbiology, 29, 229–243.PubMedCrossRefGoogle Scholar
  85. Mapelli, F., Marasco, R., Rizzi, A., Baldi, F., Ventura, S., Daffonchio, D., & Borin, S. (2011). Bacterial communities involved in soil formation and plant establishment triggered by pyrite bioweathering on Arctic moraines. Microbial Ecology, 61, 438–447.PubMedCrossRefGoogle Scholar
  86. Marschner, P. (2007). Plant microbe interactions in the rhizosphere and nutrient cycling. In P. Marschner & Z. Rengel (Eds.), Nutrient cycling in terrestrial ecosystems (Soil biology series, pp. 159–182). Heidelberg: Springer.CrossRefGoogle Scholar
  87. Marschner, P. (2008). The role of rhizosphere microorganisms in relation to P uptake by plants. In P. J. White & J. Hammond (Eds.), The ecophysiology of plant-phosphorus interactions series: Plant ecophysiology (Vol. 7, pp. 165–176). Dordrecht: Springer.CrossRefGoogle Scholar
  88. Marschner, P., & Baumann, K. (2003). Changes in bacterial community structure induced by mycorrhizal colonisation in split-root maize. Plant and Soil, 251, 279–289.CrossRefGoogle Scholar
  89. Martin, J. P., & Haider, K. (1971). Microbial activity in relation to soil humus formation. Soil Science, 111, 54–63.CrossRefGoogle Scholar
  90. Miniaci, C., Bunge, M., Duc, L., Edwards, I., Burgmann, H., & Zeyer, J. (2007). Effects of pioneering plants on microbial structures and functions in a glacier forefield. Biology and Fertility of Soils, 44, 289–297.CrossRefGoogle Scholar
  91. Moore, J. A. M., Jiang, J., Courtney, M., Patterson, C. M., Melanie, A., Mayes, M. A., Wang, G., & Classen, A. T. (2015). Interactions among roots, mycorrhizas and free-living microbial communities differentially impact soil carbon processes. Journal of Ecology, 103, 1442–1453.CrossRefGoogle Scholar
  92. Morel, J. L., Habib, L., Plantureux, S., & Guckert, A. (1991). Influence of maize root mucilage on soil aggregate stability. Plant and Soil, 136, 111–119.CrossRefGoogle Scholar
  93. Olivares, J., Bedmar, E. J., & Sanjuán, J. (2013). Biological nitrogen fixation in the context of global change. Molecular Plant-Microbe Interactions, 26, 486–494.PubMedCrossRefGoogle Scholar
  94. Olsson, P. A., Thingstrup, I., Jakobsen, I., & Baath, F. (1999). Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biology and Biochemistry, 31, 1879–1887.CrossRefGoogle Scholar
  95. Pal, A., & Pandey, S. (2014). Role of glomalin in improving soil fertility. International Journal of Plant and Soil Science, 3, 112–129.CrossRefGoogle Scholar
  96. Paul, E. A. (2007). Soil microbiology, ecology and biochemistry in perspective. In E. A. Paul (Ed.), Soil microbiology ecology and biochemistry (3rd ed., pp. 3–24). San Diego: Academic.CrossRefGoogle Scholar
  97. Paul, E. A., & Clark, F. E. (1996). Soil microbiology and biochemistry (2nd ed.). San Diego: Academic.Google Scholar
  98. Puente, M. E., Li, C. Y., & Bashan, Y. (2009). Rock-degrading endophytic bacteria in cacti. Environmental and Experimental Botany, 66, 389–401.CrossRefGoogle Scholar
  99. Purin, S., & Rillig, M. C. (2007). The arbuscular mycorrhizal fungal protein glomalin: Limitations, progress, and a new hypothesis for its function. Pedobiologia, 51, 123–130.CrossRefGoogle Scholar
  100. Quirk, J., Beerling, D. J., Banwart, S. A., Kakonyi, G., Romero-Gonzalez, M. E., & Leake, J. R. (2012). Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering. Biology Letters, 8, 1006–1011.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Ranalli, G., Zanardini, E., & Sorlini, C. (2009). Biodeterioration including cultural heritage. In M. Schaechter (Ed.), Encyclopedia of microbiology (3rd ed., pp. 191–205). Oxford: Elsevier.CrossRefGoogle Scholar
  102. Remiszewskia, K. A., Brycea, J. G., Fahnestocka, M. F., Pettitta, E. A., Blichert-Toft, J., Vadeboncoeur, M. A., & Bailey, S. W. (2016). Elemental and isotopic perspectives on the impact of arbuscular mycorrhizal and ectomycorrhizal fungi on mineral weathering across imposed geologic gradients. Chemical Geology, 445, 164–171.CrossRefGoogle Scholar
  103. Richardson, A. E., Barea, J. M., McNeill, A. M., & Prigent-Combaret, C. (2009). Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil, 321, 305–339.CrossRefGoogle Scholar
  104. Rillig, M. C., & Mummey, D. L. (2006). Mycorrhizas and soil structure. The New Phytologist, 171, 41–53.PubMedCrossRefGoogle Scholar
  105. Rillig, M. C., & Steinberg, P. D. (2002). Glomalin production by an arbuscular mycorrhizal fungus: A mechanism of habitat modification? Soil Biology and Biochemistry, 34, 1371–1374.CrossRefGoogle Scholar
  106. Rillig, M. C., Mummey, D. L., Ramsey, P. W., Klironomos, J. N., & Gannon, J. E. (2006). Phylogeny of arbuscular mycorrhizal fungi predicts community composition of symbiosis-associated bacteria: AMF-associated bacterial communities. FEMS Microbiology Ecology, 57, 389–395.PubMedCrossRefGoogle Scholar
  107. Ritz, K. (2006). Fungal roles in transport processes in soils. In G. M. Gadd (Ed.), Fungi in biogeochemical cycles (pp. 51–73). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  108. Rosling, A., Roose, T., Herrmann, A. M., Davidson, F. A., Finlay, R. D., & Gadd, G. M. (2009). Approaches to modelling mineral weathering by fungi. Fungal Biology Reviews, 23, 1–7.CrossRefGoogle Scholar
  109. Ruttenberg, K. C. (2002). The global phosphorus cycle. In A. S. Goudie & D. J. Cuff (Eds.), The encyclopedia of global change (Vol. 2, pp. 241–245). Oxford: Oxford University Press.Google Scholar
  110. Sanz-Montero, M. E., & Rodríguez-Aranda, J. P. (2012). Endomycorrhizae in Miocene paleosols: Implications in biotite weathering and accumulation of dolomite in plant roots (SW Madrid Basin, Spain). Palaeogeography Palaeoclimatology Palaeoecology, 333–334, 121–130.CrossRefGoogle Scholar
  111. Schulz, S., Brankatschk, R., Dumig, A., Kogel-Knabner, I., Schloter, M., & Zeyer, J. (2013). The role of microorganisms at different stages of ecosystem development for soil formation. Biogeosciences, 10, 3983–3996.CrossRefGoogle Scholar
  112. Schüßler, A., & Walker, C. (2011). Evolution of the ‘plant-symbiotic’ fungal phylum, Glomeromycota. In S. Pöggeler & J. Wöstemeyer (Eds.), Evolution of fungi and fungal-like organisms (pp. 163–185). Berlin: Springer.CrossRefGoogle Scholar
  113. Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus, 2, 587.PubMedCrossRefGoogle Scholar
  114. Six, J., Frey, S. D., Thiet, R. K., & Batten, K. M. (2006). Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal, 70, 555–569.CrossRefGoogle Scholar
  115. Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis (3rd ed.). New York: Academic.Google Scholar
  116. Smith, S. E., & Smith, F. A. (2011). Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystems scales. Annual Review of Plant Biology, 63, 227–250.CrossRefGoogle Scholar
  117. Smits, M. M., Bonneville, S., Benning, L. G., Banwart, S. A., & Leake, J. R. (2012). Plant-driven weathering of apatite-The role of an ectomycorrhizal fungus. Geobiology, 10, 445–456.PubMedCrossRefGoogle Scholar
  118. Snyder, V. A., & Vázquez, M. A. (2005). Structure. In D. Hillel, J. H. Hatfield, D. S. Powlson, C. Rosenzweig, K. M. Scow, M. J. Singer, & D. L. Sparks (Eds.), Encyclopedia of soils in the environment (pp. 54–68). Oxford: Elsevier/Academic.CrossRefGoogle Scholar
  119. Sokolova, T. A. (2011). The role of soil biota in the weathering of minerals: A review of literature. Eurasian Soil Science, 44, 56–72.CrossRefGoogle Scholar
  120. Sollins, P., Homann, P., & Caldwell, B. A. (1996). Stabilization and destabilization of soil organic matter: Mechanisms and controls. Geoderma, 74, 65–105.CrossRefGoogle Scholar
  121. Stein, L. Y., & Klotz, M. G. (2016). The nitrogen cycle. Current Biology, 26, 94–98.CrossRefGoogle Scholar
  122. Taylor, L. L., Leake, J. R., Quirk, J., Hardy, K., Banwart, S. A., & Beerling, D. J. (2009). Biological weathering and the long-term carbon cycle: Integrating mycorrhizal evolution and function into the current paradigm. Geobiology, 7, 171–191.PubMedCrossRefGoogle Scholar
  123. Thorley, R. M., Taylor, L. L., Banwart, S. A., Leake, J. R., & Beerling, D. J. (2015). The role of forest trees and their mycorrhizal fungi in carbonate rock weathering and its significance for global carbon cycling. Plant, Cell & Environment, 38, 1947–1961.CrossRefGoogle Scholar
  124. Towe, S., Albert, A., Kleineidam, K., Brankatschk, R., Dumig, A., Welzl, G., Munch, J. C., Zeyer, J., & Schloter, M. (2010). Abundance of microbes involved in nitrogen transformation in the rhizosphere of Leucanthemopsis alpina (L.) Heywood grown in soils from different sites of the Damma glacier forefield. Microbial Ecology, 60, 762–770.PubMedCrossRefGoogle Scholar
  125. Tremblay, L., & Benner, R. (2006). Microbial contributions to N-immobilization and organic matter preservation in decomposing plant detritus. Geochimica et Cosmochimica Acta, 70, 133–146.CrossRefGoogle Scholar
  126. Uroz, S., Calvaruso, C., Turpault, M. P., Pierrat, J. C., Mustin, C., & Frey-Klett, P. (2007). Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the soil bacterial communities involved in mineral weathering in a forest soil. Applied and Environmental Microbiology, 73, 3019–3027.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Uroz, S., Calvaruso, C., Turpault, M. P., & Frey-Klett, P. (2009). Mineral weathering by bacteria: Ecology, actors and mechanisms. Trends in Microbiology, 17, 378–387.PubMedCrossRefGoogle Scholar
  128. Uroz, S., Turpault, M. P., van Scholl, L., Palin, B., & Frey-Klett, P. (2011). Long term impact of mineral amendment on the distribution of mineral weathering associated bacterial communities from the beech Scleroderma citrinum ectomycorrhizosphere. Soil Biology and Biochemistry, 43, 2275–2282.CrossRefGoogle Scholar
  129. van Breemen, N., Mulder, J., & Driscoll, C. T. (1983). Acidification and alkalinization of soils. Plant and Soil, 75, 283–308.CrossRefGoogle Scholar
  130. van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A., & Sanders, I. R. (2015). Mycorrhizal ecology and evolution: The past, the present and the future. The New Phytologist, 205, 1406–1423.PubMedCrossRefGoogle Scholar
  131. Wallander, H., & Thelin, G. (2008). The stimulating effect of apatite on ectomycorrhizal growth diminishes after PK fertilization. Soil Biology and Biochemistry, 40, 2517–2522.CrossRefGoogle Scholar
  132. Wallander, H., Wickman, T., & Jacks, G. (1997). Apatite as a P source in mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Plant and Soil, 196, 123–131.CrossRefGoogle Scholar
  133. Wanek, W., Mooshammer, M., Blöchl, A., Hanreich, A., & Richter, A. (2010). Determination of gross rates of amino acid production and immobilization in decomposing leaf litter by a novel 15N isotope pool dilution technique. Soil Biology and Biochemistry, 42, 1293–1302.CrossRefGoogle Scholar
  134. Wang, Y., & Dai, C. C. (2011). Endophytes: A potential resource for biosynthesis, biotransformation, and biodegradation. Annales de Microbiologie, 61, 207–215.CrossRefGoogle Scholar
  135. Warscheid, T., & Braams, J. (2000). Biodeterioration of stone: A review. International Biodeterioration and Biodegradation, 46, 343–368.CrossRefGoogle Scholar
  136. Whiffen, L. K., Midgley, D. J., & McGee, P. A. (2007). Polyphenolic compounds interfere with quantification of protein in soil extracts using the Bradford method. Soil Biology and Biochemistry, 39, 691–694.CrossRefGoogle Scholar
  137. Wilson, D. (1995). Endophyte – the evolution of the term, a clarification of its use and definition. Oikos, 73, 274–276.CrossRefGoogle Scholar
  138. Wilson, G. W., Rice, C. W., Rillig, M. C., Springer, A., & Hartnett, D. C. (2009). Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: Results from long-term field experiments. Ecology Letters, 12, 452–461.PubMedCrossRefGoogle Scholar
  139. Winkelmann, G. (2007). Ecology of siderophores with special reference to the fungi. Biometals, 20, 379–392.PubMedCrossRefGoogle Scholar
  140. Wright, S. F., & Upadhyaya, A. (1996). Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Plant and Soil, 198, 97–107.CrossRefGoogle Scholar
  141. Wu, Q. S., He, X. H., Zou, Y. N., He, K. P., Sun, Y. H., & Cao, M. Q. (2012). Spatial distribution of glomalin-related soil protein and its relationships with root mycorrhization, soil aggregates, carbohydrates, activity of protease and β-glucosidase in the rhizosphere of Citrus unshiu. Soil Biology and Biochemistry, 45, 181–183.CrossRefGoogle Scholar
  142. Xie, X., Huang, W., Liu, F., Tang, N., Liu, Y., Lin, H., & Zhao, B. (2013). Functional analysis of the novel mycorrhiza-specific phosphate transporter AsPT1 and PHT1 family from Astragalus sinicus during the arbuscular mycorrhizal symbiosis. The New Phytologist, 198, 836–852.PubMedCrossRefGoogle Scholar
  143. Young, I. M., & Crawford, J. W. (2007). Interactions and self organisation in the soil-microbe complex. Science, 304, 1634–1637.CrossRefGoogle Scholar
  144. Zhu, Y. G., Duan, G. L., Chen, B. D., Peng, X. H., Chen, Z., & Sun, G. X. (2014). Mineral weathering and element cycling in soil-microorganism-plant system. Science China Earth Sciences, 57, 888–896.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • R. Koshila Ravi
    • 1
  • S. Anusuya
    • 1
  • M. Balachandar
    • 1
  • T. Muthukumar
    • 1
  1. 1.Root and Soil Biology Laboratory, Department of BotanyBharathiar UniversityCoimbatoreIndia

Personalised recommendations