Role of Microorganisms in Soil Genesis and Functions

  • N. Kaviya
  • Viabhav K. Upadhayay
  • Jyoti Singh
  • Amir Khan
  • Manisha Panwar
  • Ajay Veer Singh


The soil is an eminent gift from nature encompassing numerous essential minerals and nutrients for maintaining the vivacity of living biota such as plants, animals, and microorganisms. Soil genesis or pedogenesis is an imperative phenomenon, where biological activities shown by microorganisms which open numerous ways for promoting the process of soil formation. Microorganisms including bacteria, fungi, cyanobacteria, and lichens are said to be well-known ‘soil engineers’ actively participate in pedogenesis through commencing the process of biological weathering of rocks, decomposition of organic matters and nutrient cycling. However, the study on soil microorganisms is an important aspect for depicting their role in soil genesis and it is also apparent to determine both culturable and unculturable diversity of soil inhabitant microbiota. In this view, the present manuscript is focused on depicting the role of microorganisms in soil formation and the mechanisms for weathering process employed by such micro-flora with highlighting the current and advanced molecular approaches for determining microbial diversity in soil.


  1. Acosta Martínez, V., Dowd, S., Sun, Y., & Allen, V. (2008). Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biology and Biochemistry, 40, 2762–2770.CrossRefGoogle Scholar
  2. Agrawal, P. K., Agrawal, S., & Shrivastava, R. (2015). Modern molecular approaches for analyzing microbial diversity from mushroom compost ecosystem. 3 Biotech, 5, 853–866.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Amann, R., & Ludwig, W. (2000). Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. FEMS Microbiology Reviews, 24(5), 555–565.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Andriuzzi, W. S., Ngo, P. T., Geisen, S., Keith, A. M., Dumack, K., & Bolger, T. (2016). Organic matter composition and the protist and nematode communities around anecic earthworm burrows. Biology and Fertility of Soils, 52, 91–100.CrossRefGoogle Scholar
  5. April, R., & Keller, D. (1990). Mineralogy of the rhizosphere in forest soils of the eastern United States. Biogeochemistry, 9, 1–18.CrossRefGoogle Scholar
  6. Arino, X., Gomez-Bolea, A., & Saiz-Jimenez, C. (1997). Lichens on ancient mortars. International Biodeterioration & Biodegradation, 40, 217–224.CrossRefGoogle Scholar
  7. Bae, K. S., & Barton, L. L. (1989). Alkaline phosphates and other hydrolyases produced by Cenococcum graniforme, an ectomycorrhizal fungus. Applied and Environmental Microbiology, 55, 2511–2516.PubMedPubMedCentralGoogle Scholar
  8. Balesdent, J., Chenu, C., & Balabane, M. (2000). Relationship of soil organic matter dynamics to physical protection and tillage. Soil and Tillage Research, 53, 215–230.CrossRefGoogle Scholar
  9. Balogh-Brunstad, Z., Keller, C. K., Bormann, B. T., O’Brien, R., Wang, D., & Hawley, G. (2008). Chemical weathering and chemical denudation dynamics through ecosystem development and disturbance. Global Biogeochemical Cycles, 22, 1007.CrossRefGoogle Scholar
  10. Barber, D. A., & Lynch, J. M. (1977). Microbial growth in the rhizosphere. Soil Biology and Biochemistry, 9, 305–308.CrossRefGoogle Scholar
  11. Barker, W. W., Welch, S. A., & Banfield, J. F. (1997). Biogeochemical weathering of silicate minerals. In J. F. Banfield & K. H. Nealson (Eds.), Geomicrobiology: Interactions between microbes and minerals (Reviews in mineralogy) (Vol. 35, pp. 391–428). Chelsea: Mineralogical Society of America.CrossRefGoogle Scholar
  12. Baudoin, E., Benizri, E., & Guckert, A. (2002). Impact of growth stages on bacterial community structure along maize roots by metabolic and genetic fingerprinting. Applied Soil Ecology, 19, 135–145.CrossRefGoogle Scholar
  13. Benizri, E., Baudoin, E., & Guckert, A. (2001). Root colonization by inoculated plant growth promoting rhizobacteria. Biocontrol Science and Technology, 11(5), 557–574.CrossRefGoogle Scholar
  14. Benizri, E., Dedourge, O., Di Battista-Leboeuf, C., Nguyen, C. S., & Piutti, G. A. (2002). Effect of maize rhizodeposits on soil microbial community structure. Applied Soil Ecology, 21, 261–265.CrossRefGoogle Scholar
  15. Benson, D. R. (1988). The genus Frankia: Actinomycetes symbionts of plants. Microbiological Sciences, 5, 9–12.PubMedPubMedCentralGoogle Scholar
  16. Berthelin, J. (1983). Microbial weathering processes. Microbial geochemistry (pp. 223–262). London: Blackwell.Google Scholar
  17. Buckley, D. H., & Schmidt, T. M. (2001). The structure of microbial communities in soil and the lasting impact of cultivation. Microbial Ecology, 42, 11–21.PubMedPubMedCentralGoogle Scholar
  18. Buée, M., Reich, M., Murat, C., Morin, E., Nilsson, R. H., Uroz, S., & Martin, F. (2009). 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytologist, 184(2), 449–456.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Burgess, K. S., Fazekas, A. J., Kesanakurti, P. R., Graham, S. W., Husband, B. C., Newmaster, S. G., Percy, D. M., Hajibabaei, M., & Barrett, S. C. H. (2011). Discriminating plant species in a local temperate flora using the rbcL+matK DNA barcode. Methods in Ecology and Evolution, 2, 333–340.CrossRefGoogle Scholar
  20. Buscot, F., & Varma, A. (2005). Microorganisms in soils: Roles in genesis and functions (pp. 159–171). New York: Berlin Heidelberg/Springer.Google Scholar
  21. Calvaruso, C., Turpault, M. P., & Frey-Klett, P. (2006). Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: A budgeting analysis. Applied Environmental Microbiology, 72, 1258–1266.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chalot, M., Javelle, A., Blaudez, D., Lambilliote, R., Cooke, R., Sentenac, H., Wip, F. D., & Botton, B. (2002). An uptake on nutrient transport processes in ectomycorrhizas. Plant and Soil, 244, 165–175.CrossRefGoogle Scholar
  23. Chang, T. T., & Li, C. Y. (1998). Weathering of limestone, marble, and calcium phosphate by ectomycorrhizal fungi and associated microorganisms. Taiwan Journal of Forest Science, 13, 85–90.Google Scholar
  24. Chen, J., Blume, H. P., & Beyer, L. (2000). Weathering of rocks induced by lichen colonization –a review. Catena, 39, 121–146.CrossRefGoogle Scholar
  25. Chen, J., Kadlubar, F. F., & Chen, J. Z. (2007). DNA supercoiling suppresses real-time PCR: A new approach to the quantification of mitochondrial DNA damage and repair. Nucleic Acids Research, 35, 1377–1388.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cheng, J., Pinnell, L., Engel, K., Neufeld, J. D., & Charles, T. C. (2014). Versatile broad-host-range cosmids for construction of high quality metagenomic libraries. Journal of Microbiological Methods, 99, 27–34.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Chenu, C. (1993). Clay-or-sand polysaccharide associations as models for the interface between micro-organisms and soil: Water-related properties and microstructure. Geoderma, 56, 143–156.CrossRefGoogle Scholar
  28. Chorover, J., Kretzschmar, R., Garcia-Pichel, F., & Sparks, D. L. (2007). Soil biogeochemical processes within the critical zone. Elements, 35, 321–326.CrossRefGoogle Scholar
  29. Chotte, J. L. (2005). Importance of microorganisms for soil aggregation. In F. Buscot & A. Varma (Eds.), Microorganisms in soils: Roles in genesis and functions (pp. 107–119). Berlin: Springer.CrossRefGoogle Scholar
  30. Clarholm, M. (1985). Possible roles of roots, bacteria, protozoa and fungi in supplying nitrogen to plants. In A. H. Fitter, D. Atkinson, D. J. Read, & M. B. Usher (Eds.), Ecological interactions in soil (pp. 297–317). Oxford: Blackwell.Google Scholar
  31. Cockell, C. S., Olsson, K., Herrera, A., & Meunier, A. (2009). Alteration textures in terrestrial volcanic glass and the associated bacterial community. Geobiology, 7, 50–65.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Condron, L., Strak, C., O’Callaghan, M., Clinton, P., & Huang, Z. (2010). The role of microbial communities in the formation and decomposition of soil organic matter. In G. Dixon & E. Tilson (Eds.), Soil microbiology and sustainable crop production. Dordrecht: Springer.Google Scholar
  33. Cromack, K., & Caldwell, B. A. (1992). The role of fungi in litter decomposition and nutrient cycling. In G. C. Carroll & D. T. Wicklow (Eds.), The fungal community, its organization and role in the ecosystem (pp. 601–618). New York: Dekker.Google Scholar
  34. Davinic, M., Fultz, L. M., Acosta-Martinez, V., Caldero´ n, F. J., Cox, S. B., Dowd, S. E., Allen, V. G., Zak, J. C., & Moore-Kucera, J. (2012). Pyrosequencing and mid-infrared spectroscopy reveal distinct aggregate stratification of soil bacterial communities and organic matter composition. Soil Biology and Biochemistry, 46, 63–72.CrossRefGoogle Scholar
  35. De Long, E. F., & Pace, N. R. (2001). Environmental diversity of bacteria and archaea. Systematic Biology, 50(4), 470–478.CrossRefGoogle Scholar
  36. De Macedo, J. R., Meneguelli, N. D., Ottoni Filho, T. B., & De Sousa Lima, J. A. (2002). Estimation of field capacity and moisture retention based on regression analysis involving chemical and physical properties in Alfisols and Ultisols of the state of Rio de Janeiro. Communications in Soil Science and Plant Analysis, 33(13–14), 2037–2055.CrossRefGoogle Scholar
  37. De ta Torre, M. A., Gome Z-Alarcon, G., & Palacios, J. M. (1993). In vitro biofilm formation by Penidllium frequentans strain on sandstone, granite, and limestone. Applied Microbiology and Biotechnology, 40, 408–415.CrossRefGoogle Scholar
  38. Esposito, A., Colantuono, C., Ruggieri, V., & Chiusano, M. L. (2016). Bioinformatics for agriculture in the next-generation sequencing era. Chemical and Biological Technologies in Agriculture, 3, 1–12.CrossRefGoogle Scholar
  39. Falkowski, P. G., Fenchel, T., & Delong, E. F. (2008). The microbial engines that drive Earth’s biogeochemical cycles. Science, 320, 1034–1039.PubMedCrossRefGoogle Scholar
  40. Feeney, D. S., Crawford, J. W., Daniell, T., Hallett, P. D., Nunan, N., Ritz, K., Rivers, M., & Young, I. M. (2006). Three-dimensional microorganization of the soil–root–microbe system. Microbial Ecology, 52(1), 151–158.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Fierer, N., Jackson, J. A., Vilgalys, R., & Jackson, R. B. (2005). Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Applied and Environmental Microbiology, 71(7), 4117–4120.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Fierer, N., Breitbart, M., Nulton, J., Salamon, P., Lozupone, C., Jones, R., Robeson, M., Edwards, R. A., Felts, B., Rayhawk, S., Knight, R., Rohwer, F., & Jackson, R. B. (2007). Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Applied and Environmental Microbiology, 73, 7059–7066.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Frey-Klett, J., Garbaye, J., & Tarkka, M. (2007). The mycorrhiza helper bacteria revisited. New Phytologist, 176, 22–36.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Gadd, G. M. (1993). Interactions of fungi with toxic metals. New Phytologist, 124, 25–60.CrossRefGoogle Scholar
  45. Gadd, G. M. (2007). Geomycology: Biogeochemical transformation of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research, 111, 3–49.PubMedCrossRefGoogle Scholar
  46. Gadd, G. M. (2010). Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology, 156, 609–643.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Gilbert, J. A., & Neufeld, J. D. (2014). Life in a world without microbes. PLoS Biology, 12(12), e1002020.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Giller, K. E., Beare, M. H., Lavelle, P., Izac, A. M. N., & Swift, M. J. (1997). Agricultural intensification, soil biodiversity and agroecosystem function. Applied Soil Ecology, 6, 3–16.CrossRefGoogle Scholar
  49. Giri, B., Giang, P. H., Kumari, R., Prasad, R., & Varma, A. (2005). Microbial diversity in soils. In A. Varma & F. Buscot (Eds.), Microorganisms in soils: Roles in genesis and functions (Soil biology, Vol. 3). Berlin, Heidelberg: Springer.Google Scholar
  50. Gleeson, D. B., Kennedy, N. M., Clipson, N., Melville, K., Gadd, G. M., & McDermott, F. P. (2006). Mineralogical influences on bacterial community structure on a weathered pegmatitic granite. Microbial Ecology, 51, 526–534.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Glenn, T. C. (2011). Field guide to next-generation DNA sequencers. Molecular Ecology Resources, 11, 759–769.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hajibabaei, M., Singer, G. A. C., Clare, E. L., & Hebert, P. D. N. (2007). Design and applicability of DNA arrays and DNA barcodes in biodiversity monitoring. BMC Biology, 5(1), 24.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hawksworth, D. L. (1991a). The biodiversity of microorganisms and invertebrates: Its role in sustainable agriculture (p. 302). Melksham: CAB International/Redwood Press.Google Scholar
  54. Hawksworth, D. L. (1991b). The fungal dimension of biodiversity: Magnitude, significance, and conservation. Mycological Research, 95, 641–655.CrossRefGoogle Scholar
  55. Hawksworth, D. L., & Mound. (1991). Biodiversity databases: The crucial significance of collections. In D. L. Hawksworth (Ed.), The biodiversity of microorganisms and invertebrates: Its role in sustainable agriculture (pp. 17–29). Wallingford: CAB International.Google Scholar
  56. Haynes, R. J. (2014). Nature of the belowground ecosystem and its development during Pedogenesis. Advances in Agronomy, 127, 43–109.CrossRefGoogle Scholar
  57. Hebert, P. D. N., Ratnasingham, S., & de Waard, J. R. (2003). Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B: Biological Sciences, 270, 96–99.Google Scholar
  58. Hirsch, P., Eckhardt, F. E. W., & Palmer, R. J., Jr. (1995). Methods for the study of rock-inhabitating microorganisms—A mini review. Journal of Microbiological Methods, 23, 143–167.CrossRefGoogle Scholar
  59. Huang, D. L., Zeng, G. M., Feng, C. L., Hu, S., Jiang, X. Y., Tang, L., Su, F. F., Zhang, Y., Zeng, W., & Liu, H. L. (2008). Degradation of lead-contaminated lignocellulosic waste by Phanerochaete chrysosporium and the reduction of lead toxicity. Environmental Science & Technology, 42(13), 4946–4951.CrossRefGoogle Scholar
  60. Huber, H., Hohn, M. J., Rachel, R., Fuchs, T., Wimmer, V. C., & Stetter, K. O. (2002). A new phylum of archaea represented by a nanosized hyperthermophilic symbiont. Nature, 417, 63–67.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Jansson, J. K., van Elsas, J. D., & Bailey, M. J. (2000). Tracking genetically engineered microorganisms. Georgetown: Landes Bioscience.Google Scholar
  62. Kallenbach, C. M., Frey, D. S., & Grandy, A. S. (2016). Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nature Communications, 7, 13630.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kandeler, E., Tscherko, D., Bruce, K. D., Stemmer, M., Hobbs, P. J., Bardgett, R. D., & Amelung, W. (2000). The structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biology and Fertility of Soils, 32, 390–400.CrossRefGoogle Scholar
  64. Kaplan, W. A. (1983). Nitrification. In E. J. Carpenter & D. G. Capone (Eds.), Nitrogen in the marine environment (pp. 139–190). New York: Academic.CrossRefGoogle Scholar
  65. Kuzyakov, Y. (2010). Priming effects: Interactions between living and dead organic matter. Soil Biology and Biochemistry, 42, 1363–1371.CrossRefGoogle Scholar
  66. Kyrpides, N. C., & Olsen, G. J. (1999). Archaeal and bacterial hyperthermophiles: Horizontal gene exchange or common ancestry. Trends in Genetics, 15, 298–299.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Lakhanpal, T. N. (2000). Ectomycorrhiza–an overview. In K. G. Mukerji, B. P. Chamola, & J. Singh (Eds.), Mycorrhizal biology (pp. 101–118). New York: Kluwer/Plenum.CrossRefGoogle Scholar
  68. Lam, K. N., & Charles, T. C. (2015). Strong spurious transcription likely contributes to DNA insert bias in typical metagenomic clone libraries. Microbiome, 3, 22.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lee, K. E. (1985). Earthworms their ecology and relationships with soils and land use. Sydney: Academic.Google Scholar
  70. Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G. W., Prosser, J. I., Schuster, S. C., & Schleper, C. (2006). Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 442, 806–809.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Leita, L., De Nobili, M., Muhlbachova, G., Mondini, C., Marchiol, L., & Zerbi, G. (1995). Bioavailability and effects of heavy metals on soil microbial biomass survival during laboratory incubation. Biology and Fertility of Soils, 19, 103–108.CrossRefGoogle Scholar
  72. Lian, B., Chen Ye, Z. H. U., Lijun, Y., & Ruidong. (2008a). Effect of microbial weathering on carbonate rocks. Earth Science Frontiers, 15(6), 90–99.CrossRefGoogle Scholar
  73. Lian, B., Wang, B., Pan, M., Liu, C., & Teng, H. (2008b). Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochimica et Cosmochimica Acta, 72, 87–98.CrossRefGoogle Scholar
  74. Lipiec, J., Brzezińska, M., Turski, M., Szarlip, P., & Frąc, M. (2015). Wettability and biogeochemical properties of the drilosphere and casts of endogeic earthworms in pear orchard. Soil and Tillage Research, 145, 55–61.CrossRefGoogle Scholar
  75. Lipiec, J., Frąc, M., Brzezińska, M., Turski, M., & Oszust, K. (2016). Linking microbial enzymatic activities and functional diversity of soil around earthworm burrows and casts. Frontiers in Microbiology, 7, 1361.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lynch, J. M. (1987). Microbial interactions in the rhizosphere. Soil Microorganisms, 30, 33–41.Google Scholar
  77. Lynch, J. M. (1990). The rhizosphere. New York: Wiley.Google Scholar
  78. Lynch, J. M., & Hobbie, J. B. (1988). Microorganisms in action: Concepts and application in microbial ecology (p. 36). Oxford: Blackwell.Google Scholar
  79. Madigan, M. T., Martinko, J. M., Stahl, D. A., & David, P. (2011). Clark Brock biology of microorganisms (13th ed.). QR41.2.B77, 579—dc22.Google Scholar
  80. Mamta, R. J. R., & Khursheed, A. W. (2015). Bioremediation of pesticides under the influence of bacteria and fungi Chapter 3. In Handbook of research on uncovering new methods for ecosystem management through bioremediation (pp. 51–72). Hershey: IGI Global.CrossRefGoogle Scholar
  81. Metting, B. (1988). Micro-algae in agriculture. In M. A. Borowitzka & L. A. Borowitzka (Eds.), Microalgal biotechnology (pp. 288–304). Cambridge: Cambridge University Press.Google Scholar
  82. Mirdamadian, S. H., Emtiazi, G., Golabi, M. H., & Ghanavati, H. (2010). Biodegradation of petroleum and aromatic hydrocarbons by Bacteria isolated from petroleum-contaminated soil. Journal of Petroleum & Environmental Biotechnology, 1, 102.CrossRefGoogle Scholar
  83. Moses, C. A., & Smith, B. J. (1993). A note on the role of the lichen Collema auriforma in solution basin development on a carboniferous limestone substrate. Earth Surface Processes and Landforms, 18, 363–368.CrossRefGoogle Scholar
  84. Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., & Renella, G. (2017). Microbial diversity and soil functions. European Journal of Soil Science, 68, 1–26.CrossRefGoogle Scholar
  85. Nilsson, R. H., Kristiansson, E., Ryberg, M., Hallenberg, N., & Larsson, K. H. (2008). Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and ITS implications for molecular species identification. Evolutionary Bioinformatics, 4, 193–201.CrossRefGoogle Scholar
  86. Nunan, N. (2017). The microbial habitat in soil. Scale, heterogeneity and functional consequences. Journal of Plant Nutrition and Soil Science, 180, 425–429.CrossRefGoogle Scholar
  87. O’Donnell, A. G., Seasman, M., Macrae, A., Waite, I., & Davies, J. T. (2001). Plants and fertilizers as drivers of change in microbial community structure and function in soil. Plant and Soil, 232, 135–145.CrossRefGoogle Scholar
  88. Pace, N. R. (1997). A molecular view of microbial diversity and the biosphere. Science, 276(5313), 734–740.CrossRefGoogle Scholar
  89. Pace, N. R. (1999). Microbial ecology and diversity. ASM News, 65, 328–333.Google Scholar
  90. Pace, N. R., Olsen, G. J., & Woese, C. R. (1986). Ribosomal RNA phylogeny and the primary lines of evolutionary descent. Cell, 45, 325–326.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Paterson, E., Osler, G., Dawson, L. A., Gebbing, T., Sim, A., & Ord, B. (2008). Labile and recalcitrant plant fractions are utilised by distinct microbial communities in soil: Independent of the presence of roots and mycorrhizal fungi. Soil Biology and Biochemistry, 40, 1103–1113.CrossRefGoogle Scholar
  92. Payne, J. W. (1981). Denitrification. New York: Wiley.Google Scholar
  93. Pizl, V., & Novakova, A. (2003). Interactions between microfungi and Eisenia andrei (Oligochaeta) during cattle manure vermicomposting. Pedobiologia, 47, 895–899.Google Scholar
  94. Prescott, L. M., Harley, J. P., & Klein, D. A. (1996). The diversity of the microbial world. In L. M. Prescott, J. P. Harley, & D. A. Klein (Eds.), Microbiology. Dubuque: WCB Publishers.Google Scholar
  95. Prosser, J. I. (2002). Molecular and functional diversity in soil micro-organisms. Plant and Soil, 244, 9–17.CrossRefGoogle Scholar
  96. Puente, M. E., Bashan, Y., Li, C. Y., & Lebsky, V. K. (2004). Microbial populations and activities in the rhizoplane of rock-weathering desert plants I. Root colonization and weathering of igneous rocks. Plant Biology, 6, 629–642.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Puente, M. E., Rodriguez-Jaramillo, M. C., Li, C. Y., & Bashan, Y. (2006). Image analysis for quantification of bacterial rock weathering. Journal of Microbiological Methods, 64, 275–286.PubMedCrossRefPubMedCentralGoogle Scholar
  98. Quejigo, J. R., Dominguez-Garay, A., Dorfler, A., Schroll, R., & Esteve-Nunez, A. (2018). Anodic shifting of the microbial community profile to enhance oxidative metabolism in soil. Soil Biology and Biochemistry, 116, 131–138.CrossRefGoogle Scholar
  99. Ren, R., Sun, Y., Zhao, Y., Geiser, D., Ma, H., & Zhou, X. (2016). Phylogenetic resolution of deep eukaryotic and fungal relationships using highly conserved low-copy nuclear genes. Genome Biology and Evolution, 8(9), 2683–2701.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Richter, D. D., Oh, N. H., Fimmen, R., & Jackson, J. (2007). The rhizosphere and soil formation. In The rhizosphere: An ecological perspective (pp. 179–200). Cambridge: Academic.CrossRefGoogle Scholar
  101. Roesch, L. F. W., Fulthorpe, R. R., Riva, A., Casella, G., Km, A., Kent, A. D., Daroub, S. H., Camargo, F. A. O., Farmerie, W. G., & Triplett, E. W. (2007). Pyrosequencing enumerates and contracts soil microbial diversity. The ISME Journal, 1, 283–290.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Rousk, J., Bååth, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., Knight, R., & Fierer, N. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal, 4, 1340–1351.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Schimel, J. (1995). Ecosystem consequences of microbial diversity and community structure. In F. S. Chapin & C. Korner (Eds.), Arctic and alpine biodiversity: Patterns, causes and ecosystem consequences. Ecological studies (Analysis and syntehsis, Vol. 113). Berlin, Heidelberg: Springer.Google Scholar
  104. Shokralla, S., Spall, J. L., Gibson, J. F., & Hajibabaei, M. (2012). Next-generation sequencing technologies for environmental DNA research. Molecular Ecology, 21, 1794–1805.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Singh, A. V., Sharma, A., & Johri, B. N. (2012). Phylogenetic profiling of culturable bacteria associated with early phase of mushroom composting assessed by amplified rDNA restriction analysis. Annals of Microbiology, 62, 675–682.CrossRefGoogle Scholar
  106. Smitha, M. S., Singh, S., & Singh, R. (2017). Microbial biotransformation: A process for chemical alterations. Journal of Bacteriology & Mycology: Open Access, 4(2), 00085.Google Scholar
  107. Sollins, P., Cromack, K., Jr., Li, C. Y., & Fogel, R. (1981). Role of low-molecular weight organic acids in the inorganic nutrition of fungi and higher plants. In G. C. Carroll & D. T. Wicklow (Eds.), The fungal community, its organization and role in ecosystem. New York: Dekker.Google Scholar
  108. Sterflinger, K., & Krumbein, W. E. (1997). Dematiaceous fungi as a major agent for biopitting on Mediterranean marbles and limestones. Geomicrobiology Journal, 14, 219–222.CrossRefGoogle Scholar
  109. SubbaRao, N. S. (1997). Soil microbiology. Oxford: IBH Publ.Google Scholar
  110. Szalay, A. (1964). Cation exchange properties of humic acids and their importance in the geochemical enrichment of UO2 ++ and other cations. Geochimica et Cosmochimica Acta, 28, 1605–1614.CrossRefGoogle Scholar
  111. Tabatabai, M. A. (1982). Soil enzymes. In A. L. Page, M. Rh, & D. R. Keeney (Eds.), Methods of soil analysis, part 2. Chemical and microbiological properties – Agronomy. Madison: American Society of Agronomy, Soil Science Society of America.Google Scholar
  112. Tate, K. R., Parshotam, A., & Ross, D. J. (1995). Soil carbon storage and turnover in temperate forests and grasslands – A New Zealand perspective. Journal of Biogeography, 22, 695–700.CrossRefGoogle Scholar
  113. Temperton, B., Field, D., Oliver, A., Tiwari, B., Mühling, M., & Joint, I. (2009). Bias in assessments of marine microbial biodiversity in fosmid libraries as evaluated by pyrosequencing. The ISME Journal, 3, 792–796.PubMedCrossRefPubMedCentralGoogle Scholar
  114. Tiedje, J. M., Asuming-Brempong, S., Nüsslein, K., Marsh, T. L., & Flynn, S. J. (1999). Opening the black box of soil microbial diversity. Applied Soil Ecology, 13, 109–122.CrossRefGoogle Scholar
  115. Torsvik, V., Goksoyr, J., & Daae, F. L. (1990). High diversity in DNA of soil bacteria. Applied Environmental and Microbiology, 56, 782–787.Google Scholar
  116. Tourasse, N. J., & Gouy, M. (1997). Evolutionary distances between nucleotide sequences based on the distribution of substitution rates among sites as estimated by parsimony. Molecular Biology and Evolution, 14(3), 287–298.PubMedCrossRefPubMedCentralGoogle Scholar
  117. Uroz, S., Calvaruso, C., Marie-Pierre, T., & Frey-Klett, P. (2009). Mineral weathering by bacteria: Ecology, actors and mechanisms. Trends in Microbiology, 17, 378–387.PubMedCrossRefGoogle Scholar
  118. Wainwright, M. (1992). The impact of fungi on environmental biogeochemistry. In G. C. Carroll & D. T. Wicklow (Eds.), The fungal community, its organization and role in the ecosystem (pp. 601–618). New York: Dekker.Google Scholar
  119. Welch, D. B. M., & Huse, S. M. (2011). Microbial diversity in the deep sea and the underexplored “Rare Biosphere”. In Handbook of molecular microbial ecology II: Metagenomics in different habitats (pp. 243–252). Hoboken: Wiley-Blackwell. Scholar
  120. Welch, S., & McPhail, D. (2003). Mobility of major and trace elements during biologically mediated weathering of granite. In I. C. Roach (Ed.), CRC LEME Regional Regolith Symposia (pp. 437–440). Millaa Millaa: CRC LEME.Google Scholar
  121. Woese, C. R., & Fox, G. E. (1977). Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proceedings of the National Academy of Sciences, 74(11), 5088–5090.CrossRefGoogle Scholar
  122. Woese, C. R., Kandler, O., & Wheelis, M. L. (1990). Towards a natural system of organisms: Proposal for the domains archaea, bacteria, and eucarya. Proceedings of the National Academy of Sciences, 87, 4576–4579.CrossRefGoogle Scholar
  123. Wolters, V. (1991). Soil invertebrates – Effects on nutrient turnover and soil structure: A review. Zeitschrift für Pflanzenernährung und Bodenkunde, 154, 389–402.CrossRefGoogle Scholar
  124. Zambell, C. B., Adams, J. M., Gorring, M. L., & Schwartzman, D. W. (2012). Effect of lichen colonization on chemical weathering of hornblende granite as estimated by aqueous elemental flux. Chemical Geology, 291, 166–174.CrossRefGoogle Scholar
  125. Zhang, J., Chiodini, R., Badr, A., & Zhang, G. (2011). The impact of next generation sequencing on genomics. Journal of Genetics and Genomics, 38, 95–109.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • N. Kaviya
    • 1
  • Viabhav K. Upadhayay
    • 1
  • Jyoti Singh
    • 1
  • Amir Khan
    • 1
  • Manisha Panwar
    • 1
  • Ajay Veer Singh
    • 1
  1. 1.Department of Microbiology, College of Basic Sciences and HumanitiesGovind Ballabh Pant University of Agriculture and TechnologyPantnagarIndia

Personalised recommendations