Skip to main content

Mycorrhiza Based Approaches for Soil Remediation and Abiotic Stress Management

  • Chapter
  • First Online:
Mycorrhizosphere and Pedogenesis

Abstract

Anthropogenic activities have resulted into degradation of land and water bodies. Excessive mining activities lead to the contamination of nearby areas with heavy metals viz. Pb, As, Cd, Zn etc. All these elements are highly toxic to the plants when they are exposed at a higher concentration. Apart from these heavy metals even the excessive use of fertilizers, herbicides and unmetabolized antibiotics from livestock farming can also leaves considerable amount of toxic residues in the soil which hinder the overall growth of plants. In addition to this, abiotic stresses viz. drought stress, salt stress, osmotic stress and ozone stress etc. also limits the crop production. The level of their impact on the different crops across the globe varies depending upon the geographical location and unscrupulous human activities but altogether it results into a huge annual loss to the global crop productivity. Several approaches have been designed to figure out the stress right from artificial to biological. The biological approach includes the use of living organism for stress alleviation among which Arbuscular Mycorrhizal fungi (AMF) emerged as a potent tool for stress alleviation and phytoremediation. The term “phytoremediation” has got more and more attention over the past decade. Due to the multifaceted applications of AMF, it has been widely used as a xenobiotic tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Latef, A., & Chaoxing, H. (2014). Does the inoculation with Glomus mosseae improve salt tolerance in pepper plants? Journal of Plant Growth Regulation, 33(3), 644–653.

    Article  CAS  Google Scholar 

  • Adriaensen, K., Vralstad, T., Noben, J. P., Vangronsveld, J., & Colpaert, J. V. (2005). Copper-adapted Suillus luteus, a symbiotic solution for pines colonizing Cu mine spoils. Applied and Environmental Microbiology, 71(11), 7279–7284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akbarimoghaddam, H., Galavi, M., Ghanbari, A., & Panjehkeh, N. (2011). Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia Journal of Sciences, 9(1), 43–50.

    Google Scholar 

  • Al-Garni, S. M. S. (2006). Increasing NaCl – Salt tolerance of a halophytic plant Phragmites australis by mycorrhizal symbiosis. American-Eurasian Journal of Agricultural & Environmental Sciences, 1, 119–126.

    Google Scholar 

  • Ali, N., Masood, S., Mukhtar, T., Kamran, M. A., Rafique, M., Munis, M. F. H., & Chaudhary, H. J. (2015). Differential effects of cadmium and chromium on growth, photosynthetic activity, and metal uptake of Linum usitatissimum in association with Glomus intraradices. Environmental Monitoring and Assessment, 187, 1–11.

    Article  CAS  Google Scholar 

  • Al-Karaki, G. N. (2000). Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza, 10, 51–54.

    Article  CAS  Google Scholar 

  • Al-Karaki, G. N. (2006). Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Scientia Horticulturae, 109, 1–7.

    Article  Google Scholar 

  • Al-Karaki, G. N. (2013). The role of mycorrhiza in the reclamation of degraded lands in arid environments. In S. A. Shahid, F. K. Taha, & M. A. Abdelfattah (Eds.), Developments in soil classification, land use planning and policy implications: Innovative thinking of soil inventory for land use planning and management of land resources (pp. 823–836). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Al-Karaki, G. N., & Hammad, R. (2001). Mycorrhizal in fl uence on fruit yield and mineral contents of tomato grown under salt stress. Journal of Plant Nutrition, 24, 1311–1323.

    Article  CAS  Google Scholar 

  • Al-Karaki, G. N., McMichael, B., & Zak, J. (2004). Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza, 14, 263–269.

    Article  PubMed  Google Scholar 

  • Al-Karaki, G. N., Othman, Y., & Al-Ajmi, A. (2007). Effects of mycorrhizal fungi inoculation on landscape turf establishment under Arabian Gulf region conditions. Arab Gulf Journal of Scientific Research, 25(3), 147–152.

    Google Scholar 

  • Allen EB (1984) The role of mycorrhiza in mined land diversity. In: Proceedings of the third biennial symposium surface mine reclamation on the great plains, Montana, 19–21 March 1984, pp 273–295.

    Google Scholar 

  • Allen, M. F. (2007). Mycorrhizal fungi: Highways for water and nutrients in arid soils. Vadose Zone Journal, 6, 291–297.

    Article  Google Scholar 

  • Amir, H., Lagrange, A., Hassaine, N., & Cavaloc, Y. (2013). Arbuscular mycorrhizal fungi from New Caledonian ultramafic soils improve tolerance to nickel of endemic plant species. Mycorrhiza, 23, 585–595.

    Article  CAS  PubMed  Google Scholar 

  • Andrade, S. A. L., Gratao, P. L., Schiavinato, M. A., Silveira, A. P. D., Azevedo, R. A., & Mazzafera, P. (2009). Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations. Chemosphere, 75, 1363–1370.

    Article  CAS  PubMed  Google Scholar 

  • Anjum, S. A., Wang, L. C., Farooq, M., Hussain, M., Xue, L. L., & Zou, C. M. (2011). Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. Journal of Agronomy and Crop Science, 197, 177–185.

    Article  CAS  Google Scholar 

  • Aroca, R., Porcel, R., & Ruiz-Lozano, M. J. (2012). Regulation of root water uptake under abiotic stress conditions. Journal of Experimental Botany, 63, 43–57.

    Article  CAS  PubMed  Google Scholar 

  • Ashmore, M. R. (2005). Assessing the future global impacts of ozone on vegetation. Plant, Cell & Environment, 28, 949–964.

    Article  CAS  Google Scholar 

  • Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206–216.

    Article  CAS  Google Scholar 

  • Auge, R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11, 3–42.

    Article  Google Scholar 

  • Auge, R. M., Schekel, K. A., & Wample, R. L. (1987). Leaf water and carbohydrate status of VA mycorrhizal rose exposed to drought stress. Plant and Soil, 99, 291–302.

    Article  CAS  Google Scholar 

  • Azcón, R., Perálvarez Mdel, C., Roldán, A., & Barea, J. M. (2010). Arbuscular mycorrhizal fungi, Bacillus cereus, and Candida parapsilosis from a multi contaminated soil alleviate metal toxicity in plants. Microbial Ecology, 59(4), 668–677.

    Article  PubMed  Google Scholar 

  • Baldrian, P., Wiesche, C., Gabriel, J., Nerud, F., & Zadrazi, F. (2000). Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Journal of Applied & Environmental Microbiology, 66, 2471–2478.

    Article  CAS  Google Scholar 

  • Ban, Y., Xu, Z., Zhang, H., Chen, H., & Tang, M. (2015). Soil chemistry properties, translocation of heavy metals, and mycorrhizal fungi associated with six plant species growing on lead-zinc mine tailings. Annales de Microbiologie, 65, 503–515.

    Article  CAS  Google Scholar 

  • Barea, J. M., Pozo, M. J., Azcon, R., & Azcon-Aguilar, C. (2005). Microbial cooperation in the rhizosphere. Journal of Experimental Botany, 56, 1761–1778.

    Article  CAS  PubMed  Google Scholar 

  • Bartikova, H., Podlipna, R., & Skalova, L. (2016). Veterinary drugs in the environment and their toxicity to plants. Chemosphere, 144, 2290–2301.

    Article  CAS  PubMed  Google Scholar 

  • Bárzana, G., Aroca, R., & Ruiz-Lozano, J. M. (2015). Localized and nonlocalized effects of arbuscular mycorrhizal symbiosis on accumulation of osmolytes and aquaporins and on antioxidant systems in maize plants subjected to total or partial root drying. Plant, Cell & Environment, 38, 1613–1627.

    Article  CAS  Google Scholar 

  • Bearden, B. N., & Petersen, L. (2000). Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of a vertisol. Plant and Soil, 218, 173–183.

    Article  CAS  Google Scholar 

  • Bernal, M., Ramiro, M. V., Cases, R., Picorel, R., & Yruela, I. (2006). Excess copper effect on growth, chloroplast ultrastructure, oxygen-evolution activity and chlorophyll fluorescence in Glycine max cell suspensions. Physiologia Plantarum, 127, 312–325.

    Article  CAS  Google Scholar 

  • Beste, C. E. (Ed.). (1983). Herbicide handbook of the weed science Society of America (5th ed., p. 515). Champaign: Weed Science Society of America.

    Google Scholar 

  • Bhattacharya, A., & Bhattacharya, S. (2007). Induction of stress by arsenic in Clarius batrachus: Involvement of peroxisomes. Ecotoxicology and Environmental Safety, 66(2), 178–187.

    Article  CAS  PubMed  Google Scholar 

  • Binet, P., Portal, J. M., & Leyval, C. (2000). Dissipation of 3-6-ring polycyclic aromatic hydrocarbons in the rhizosphere of rye grass. Soil Biology and Biochemistry, 32, 2011–2017.

    Article  CAS  Google Scholar 

  • Birhane, E., Sterck, F. J., Fetene, M., Bongers, F., & Kuyper, T. W. (2012). Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia, 169, 895–904.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bohnert, H. J., Nelson, D. E., & Jensen, R. G. (1995). Adaptations to environmental stress. Plant Cell, 7, 1099–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun-Lullemann, A., Huttermann, A., & Majcherczyk, A. (1999). Screening of ectomycorrhizal fungi for degradation of polycyclic aromatic hydrocarbons. Applied Microbiology and Biotechnology, 53, 127–132.

    Article  CAS  Google Scholar 

  • Brewer, P. F., & Heagle, A. S. (1983). Interactions between Glomus geosporum and exposure of soybeans to ozone or simulated acid rain in the field. Phytopathology, 73, 1035–1040.

    Article  Google Scholar 

  • Brundrett, M. C. (2009). Mycorrhizal associations and other means of nutrition of vascular plants: Understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil, 320(1), 37–77.

    Article  CAS  Google Scholar 

  • Bundschuh, J., Bhattacharya, P., Nath, B., Naidu, R., Jack, N. G., Guilherme, L. R. G., Ma, L. Q., Kim, K. W., & Jean, J. S. (2013). Arsenic ecotoxicology: The interface between geosphere, hydrosphere and biosphere. Journal of Hazardous Materials, 262, 883–886.

    Article  CAS  PubMed  Google Scholar 

  • Burkhead, J. L., Gogolin Reynolds, K. A., Abdel-Ghany, S. E., Cohu, C. M., & Pilon, M. (2009). Copper homeostasis. The New Phytologist, 182, 799–816.

    Article  CAS  PubMed  Google Scholar 

  • Cabral, L., Soares, C. R. F. S., Giachini, A. J., & Siqueira, J. O. (2015). Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: Mechanisms and major benefits of their applications. World Journal of Microbiology and Biotechnology, 31(11), 1655–1664.

    Article  CAS  PubMed  Google Scholar 

  • Calonne-Salmon, M., Plouznikoff, K., & Declerck, S. (2018). The arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833 increases the phosphorus uptake and biomass of Medicago truncatula, a benzo[a]pyrene-tolerant plant species. Mycorrhiza, 18, 861–869.

    Google Scholar 

  • Calvo-Polanco, M., Sánchez-Romera, B., Aroca, R., Asins, M. J., Declerck, S., Dodd, I. C., Martínez-Andújar, C., Albacete, A., & Ruiz-Lozano, J. M. (2016). Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants (AM fungus and PGPR) to improve drought stress tolerance in tomato. Environmental and Experimental Botany, 131, 47–57.

    Article  CAS  Google Scholar 

  • Cantrell, I. C., & Linderman, R. G. (2001). Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant and Soil, 233, 269–281.

    Article  CAS  Google Scholar 

  • Cao, J., Ji, D. G., & Wang, C. (2015). Interaction between earthworms and arbuscular mycorrhizal fungi on the degradation of oxytetracycline in soils. Soil Biology and Biochemistry, 90, 283–292.

    Article  CAS  Google Scholar 

  • Cao, J., Wang, C., & Ji, D. (2016). Improvement of the soil nitrogen content and maize growth by earthworms and arbuscular mycorrhizal fungi in soils polluted by oxytetracycline. Science of the Total Environment, 571, 926–934.

    Article  CAS  PubMed  Google Scholar 

  • Cattivelli, L., Rizza, F., Badeck, F. W., Mazzucotelli, E., & Mastrangelo, A. M. (2008). Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Research, 105, 1–14.

    Article  Google Scholar 

  • Chaudhry, G. R., & Chapalamadugu, S. (1991). Biodegradation of halogenated organic compounds. Microbiological Reviews, 55, 59–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves, M. M., Pereira, J. S., Maroco, J., Rodrigues, M. L., Ricardo, C. P. P., Osorio, M. L., Carvalho, I., Faria, T., & Pinheiro, C. (2002). How plants cope with water stress in the field. Annals of Botany, 89, 907–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, B., Xiao, X., Zhu, Y., Smith, F. A., Xie, Z. M., & Smith, S. E. (2007a). The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Science of the Total Environment, 379, 226–234.

    Article  CAS  PubMed  Google Scholar 

  • Chen, B. D., Zhu, Y. G., Duan, J., Xiao, X. Y., & Smith, S. E. (2007b). Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environmental Pollution, 147, 374–380.

    Article  CAS  PubMed  Google Scholar 

  • Cicatelli, A., Lingua, G., Todeschini, V., Biondi, S., Torrigiani, P., & Castiglione, S. (2010). Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Annals of Botany, 106, 791–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornic, G. (2000). Drought stress inhibits photosynthesis by decreasing stomatal aperture – Not by affecting ATP synthesis. Trends in Plant Science, 5, 187–188.

    Article  Google Scholar 

  • Cozzolino, V., De Martino, A., Nebbioso, A., Di Meo, V., Salluzzo, A., & Piccolo, A. (2016). Plant tolerance to mercury in a contaminated soil is enhanced by the combined effects of humic matter addition and inoculation with arbuscular mycorrhizal fungi. Environmental Science and Pollution Research International, 23(11), 11312–11322.

    Article  CAS  PubMed  Google Scholar 

  • Danneberg, G., Latus, C., Zimmer, W., Hundeshagen, B., Schneider-Poetsch, H. J., & Bothe, H. (1992). Influence of vesicular-arbuscular mycorrhiza on phytohormone balances in maize (Zea mays L.). Journal of Plant Physiology, 141, 33–39.

    Article  Google Scholar 

  • Dell’Amico, J., Torrecillas, A., Rodriguez, P., Morte, A., & Sanchez-Blanco, M. (2002). Responses of tomato plants associated with the arbuscular mycorrhizal fungus Glomus clarum during drought and recovery. The Journal of Agricultural Science, 138, 387–393.

    Article  Google Scholar 

  • Deram, A., Languereau, F., & Haluwyn, C. (2011). Mycorrhizal and endophytic fungal colonization in Arrhenatherum elatius L. roots according to the soil contamination in heavy metals. Soil and Sediment Contamination, 20, 114–127.

    Article  CAS  Google Scholar 

  • Doherty, J. H., Ji, B., & Casper, B. B. (2008). Testing nickel tolerance of Sorghastrum nutans and its associated soil microbial community from serpentine and prairie soils. Environmental Pollution, 151(3), 593–598.

    Article  CAS  PubMed  Google Scholar 

  • Dong, Y., Zhu, Y. G., Smith, F. A., Wang, Y., & Chen, B. (2008). Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil. Environmental Pollution, 155, 174–181.

    Article  CAS  PubMed  Google Scholar 

  • Donnelly, P. K., Entry, J. A., & Crawford, D. L. (1993). Degradation of atrazine and 2,4-dichlorophenoxyacetic acid by mycorrhizal fungi at three nitrogen concentrations in vitro. Applied and Environmental Microbiology, 59, 2642–2647.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Donnelly, P. K., & Fletcher, J. S. (1994). Potential use of mycorrhizal fungi as bioremediation agents. In T. A. Anderson & J. R. Coats (Eds.), Bioremediation through rhizosphere technology (pp. 93–99). Washington: American Chemical Society.

    Chapter  Google Scholar 

  • Douchiche, O., Chaïbi, W., & Morvan, C. (2012). Cadmium tolerance and accumulation characteristics of mature flax, cv. Hermes: Contribution of the basal stem compared to the root. Journal of Hazardous Materials, 235, 101–107.

    Article  PubMed  CAS  Google Scholar 

  • Dubey, R. S. (2011). Metal toxicity, oxidative stress and antioxidative defense system in plants. In S. D. Gupta (Ed.), Reactive oxygen species andantioxidants in higher plants (pp. 177–203). Boca Raton: CRC Press.

    Google Scholar 

  • Duckmanton, L., & Widden, P. (1994). Effect of ozone on the development of vesicular arbuscular mycorrhiza in sugar maple saplings. Mycologia, 86, 181–186.

    Article  CAS  Google Scholar 

  • Feng, Z. Z., Kobayashi, K., & Ainsworth, E. A. (2008). Impact of elevated ozone concentration on growth, physiology and yield of wheat (Triticum aestivum L.): A meta analysis. Global Change Biology, 14, 2696–2708.

    Google Scholar 

  • Fischlin, A., Midgley, G. F., Price, J. T., Leemans, R., Gopal, B., Turley, C., Rounsevell, M. D. A., Dube, O. P., Tarazona, J., & Velichko, A. A. (2007). Ecosystems, their properties, goods and services. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. Van der Linden, & C. E. Hanson (Eds.), Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel of climate change (IPCC) (pp. 211–272). Cambridge: Cambridge University Press.

    Google Scholar 

  • Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T. D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 6, 1–11.

    Article  Google Scholar 

  • Gao, Y., Cheng, Z., Ling, W., & Huang, J. (2010a). Arbuscular mycorrhizal fungal hyphae contribute to the uptake of polycyclic aromatic hydrocarbons by plant roots. Bioresource Technology, 101, 6895–6901.

    Article  CAS  PubMed  Google Scholar 

  • Gao, Y. Z., Li, Q. L., Ling, W. T., & Zhu, X. Z. (2010b). Arbuscular mycorrhizal phytoremediation of soils contaminated with phenanthrene and pyrene. Journal of Hazardous Materials, 185(2–3), 703–709.

    PubMed  Google Scholar 

  • Gianinazzi, S., Gollotte, A., Binet, M. N., van Tuinen, D., Redecker, D., & Wipf, D. (2010). Agroecology: The key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza, 20(8), 519–530.

    Article  PubMed  Google Scholar 

  • Glick, B. R., & Bashan, Y. (1997). Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnology Advances, 15, 353–378.

    Article  CAS  PubMed  Google Scholar 

  • Gohre, V., & Paszkowski, U. (2006). Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta, 223, 1115–1123.

    Article  PubMed  CAS  Google Scholar 

  • Gomes, M. P., Carvalho, M., Carvalho, G. S., Marques, T. C. L. L. S. M., Garcia, Q. S., Guilherme, L. R. G., & Soares, A. M. (2013). Phosphorus improves arsenic phytoremediation by Anadenanthera peregrina by alleviating induced oxidative stress. International Journal of Phytoremediation, 15(7), 633–646.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Chavez, M. C., Carrillo-Gonzalez, R., Wright, S. F., & Nichols, K. A. (2004). The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution, 130, 317–323.

    Article  CAS  PubMed  Google Scholar 

  • González-Chávez, M. D., Carrillo-González, R., Hernández Godínez, M. I., & Evangelista Lozano, S. (2017). Jatropha curcas and assisted phytoremediation of a mine tailing with biochar and a mycorrhizal fungus. International Journal of Phytoremediation, 19(2), 174–182.

    Article  PubMed  CAS  Google Scholar 

  • Harms, H., Schlosser, D., & Wick, L. Y. (2011). Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews. Microbiology, 9, 177–192.

    CAS  PubMed  Google Scholar 

  • Hassan, S. E. D., Boon, E., St-Arnaud, M., & Hijri, M. (2011). Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal-polluted soils. Molecular Ecology, 20, 3469–3483.

    Article  CAS  Google Scholar 

  • Hidri, R., Barea, J. M., Metoui-Ben Mahmoud, O., Abdelly, C., & Azcon, R. (2016). Impact of microbial inoculation on biomass accumulation by Sulla carnosa provenances, and in regulating nutrition, physiological andantioxidant activities of this species under non-saline and saline conditions. Journal of Plant Physiology, 201, 28–41.

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt, U., Regvar, M., & Bothe, H. (2007). Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry, 68, 139–146.

    CAS  PubMed  Google Scholar 

  • Hossain, M. A., Hasanuzzaman, M., & Fujita, M. (2010). Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiology and Molecular Biology of Plants, 16, 259–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, Y., Chen, Y. J., & Tao, C. (2002). Uptake and distribution of Cu, Zn, Pb and Cd in maize related to metals speciation change in rhizosphere. Chinese Journal of Applied Ecology, 13, 860–862.

    Google Scholar 

  • IPCC. (2013). Climate change 2013: The physical science basis. New York: Cambridge University Press.

    Google Scholar 

  • Ismail, I. M., Basahi, J. M., & Hassan, I. A. (2014). Gas exchange and chlorophyll fluorescence of pea (Pisum sativum L.) plants in response to ambient ozone at a rural site in Egypt. Science of the Total Environment, 497, 585–593.

    Article  PubMed  CAS  Google Scholar 

  • Jakobsen, I., & Rosendahl, L. (1990). Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytologist, 115(1), 77–83.

    Article  Google Scholar 

  • Johnson, S. M., Doherty, S. J., & Croy, R. R. D. (2003). Biphasic superoxide generation in potato tubers. A self amplifying response to stress. Plant Physiology, 13, 1440–1449.

    Article  CAS  Google Scholar 

  • Joner, E. J., & Leyval, C. (2001). Influence of arbuscular mycorrhiza on clover and ryegrass grown together in a soil spiked with polycyclic aromatic hydrocarbons. Mycorrhiza, 10, 155–159.

    Article  CAS  Google Scholar 

  • Joner, E. J., & Leyval, C. (2003). Rhizosphere gradients of polycyclic aromatic hydrocarbon (PAH) dissipation in two industrial soils, and the impact of arbuscular mycorrhiza. Environmental Science & Technology, 37, 2371–2375.

    Article  CAS  Google Scholar 

  • Kang, F. X., Chen, D. S., Gao, Y. Z., & Zhang, Y. (2010). Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass ‘Lolium multiflorum Lam. BMC Plant Biology, 10, 210–216.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kapoor, R., Sharma, D., & Bhatnagar, A. (2008). Arbuscular mycorrhizae in micropropagation systems and their potential applications. Scientia Horticulturae, 116, 227–239.

    Article  Google Scholar 

  • Kasiamdari, R. S., Soetarto, E. S., & Sancayaningsih, R. P. (2016). Presence of arbuscular mycorrhizal fungi on fern from tailing deposition area of gold mine in Timika, Indonesia. International Journal of Environmental Bioremediation & Biodegradation, 4, 1–7.

    Google Scholar 

  • Kawamitsu, Y., Driscoll, T., & Boyer, J. S. (2000). Photosynthesis during desiccation in an intertidal alga and a land plant. Plant & Cell Physiology, 41(3), 344–353.

    Article  CAS  Google Scholar 

  • Kaya, C., Ashraf, M., Sonmez, O., Aydemir, S., Tuna, A. L., & Cullu, M. A. (2009). The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Scientia Horticulturae, 121, 1–6.

    Article  CAS  Google Scholar 

  • Knapp, A. K., Briggs, J. M., & Koelliker, J. K. (2001). Frequency and extent of water limitation to primary production in a mesic temperate grassland. Ecosystems, 4, 19–28.

    Article  Google Scholar 

  • Kramer, P. J., & Boyer, J. S. (1997). Water relations of plants and soils (p. 495). London: Academic.

    Google Scholar 

  • Krishnamoorthy, R., Kim, C. G., Subramanian, P., Kim, K. Y., Selvakumar, G., & Sa, T. M. (2015). Arbuscular mycorrhizal fungi community structure, abundance and species richness changes in soil by different levels of heavy metal and metalloid concentration. PLoS One, 10, 0128784.

    Google Scholar 

  • Krznaric, E., Wevers, J. H., Cloquet, C., Vangronsveld, J., Vanhaecke, F., & Colpaert, J. V. (2010). Zn pollution counteracts Cd toxicity in metal-tolerant ectomycorrhizal fungi and their host plant, Pinus sylvestris. Environmental Microbiology, 12(8), 2133–2141.

    CAS  PubMed  Google Scholar 

  • Kuper, J., Llamas, A., Hecht, H. J., Mendel, R. R., & Schwarz, G. (2004). Structure of the molybdopterin-bound Cnx1G domain links molybdenum and copper metabolism. Nature, 430, 803–806.

    Article  CAS  PubMed  Google Scholar 

  • Lambers, H., Chapin, F. S., & Pons, T. L. (2008). Plant physiological ecology (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Larcher, W. (1995). Physiological plant ecology. Berlin: Springer.

    Book  Google Scholar 

  • Leyval, C., & Binet, P. (1998). Effect of polyaromatic hydrocarbons in soil on arbuscular mycorrhizal plants. Journal of Environmental Quality, 27, 402–407.

    Article  CAS  Google Scholar 

  • Leyval, C., Joner, E., Del Val, C., & Haselwandter, K. (2001). Potential of arbuscular mycorrhiza for bioremediation. Mycorrhiza, 7, 308–317.

    Google Scholar 

  • Leyval, C., Joner, E. J., del Val, C., & Haselwandter, K. (2002). Potential of arbuscular mycorrhizal fungi for bioremediation. In S. Gianinazzi, H. Schuepp, J. M. Barea, & K. Haselwandter (Eds.), Mycorrhizal technology in agriculture: From genes to bioproducts (pp. 175–186). Basel: Birkhauser.

    Chapter  Google Scholar 

  • Li, H., Chen, X. W., & Wong, M. H. (2016). Arbuscular mycorrhizal fungi reduced the ratios of inorganic/organic arsenic in rice grains. Chemosphere, 145, 224–230.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., Ye, Z., Chan, W., Chen, X., Wu, F., Wu, S., & Wong, M. (2011). Can arbuscular mycorrhizal fungi improve grain yield, as uptake and tolerance of rice grown under aerobic conditions? Environmental Pollution, 159, 2537–2545.

    Article  CAS  PubMed  Google Scholar 

  • Li, X. L., & Christie, P. (2000). Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil. Chemosphere, 42, 201–207.

    Article  Google Scholar 

  • Lin, A., Zhang, X., & Yang, X. (2014). Glomus mosseae enhances root growth and Cu and Pb acquisition of upland rice (Oryza sativa L.) in contaminated soils. Ecotoxicology, 23, 2053–2061.

    Article  CAS  PubMed  Google Scholar 

  • Lykkeberg, A. K., Sengelov, G., Cornett, C., Tjornelund, J., Hansen, S. H., & Halling-Sorensen, B. (2004). Isolation, structural elucidation and in vitro activity of 2-acetyl-2-decarboxamido-oxytetracycline against environmental relevant bacteria, including tetracycline-resistant bacteria. Journal of Pharmaceutical and Biomedical Analysis, 34, 559–567.

    Article  CAS  PubMed  Google Scholar 

  • Ma, T., Pan, X., Liu, W., Christie, P., Luo, Y., & Wu, L. (2016). Effects of different concentrations and application frequencies of oxytetracycline on soil enzyme activities and microbial community diversity. European Journal of Soil Biology, 76, 53–60.

    Article  CAS  Google Scholar 

  • Machuca, A., Pereira, G., Aguiar, A., & Milagres, A. M. F. (2007). Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations. Letters in Applied Microbiology, 44, 7–12.

    Article  CAS  PubMed  Google Scholar 

  • Majorel, C., Hannibal, L., Ducousso, M., Lebrun, M., & Jourand, P. (2014). Evidence of nickel (Ni) efflux in Ni-tolerant ectomycorhizal Pisolithus albus isolated from ultramafic soil. Environmental Microbiology Reports, 6(5), 510–518.

    Article  CAS  PubMed  Google Scholar 

  • Maksymiec, W., Wojcik, M., & Krupa, Z. (2007). Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Chemosphere, 66, 421–427.

    Article  CAS  PubMed  Google Scholar 

  • Malcova, R., & Gryndler, M. (2003). Amelioration of Pb and Mn toxicity to arbuscular mycorrhizal fungus Glomus intraradices by maize root exudates. Biologia Plantarum, 47, 297–299.

    Article  CAS  Google Scholar 

  • Martino, E., Perotto, S., Parsons, R., & Gadd, G. M. (2003). Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biology and Biochemistry, 35, 133–141.

    Article  CAS  Google Scholar 

  • McCool, P. M., & Menge, J. A. (1984). Interaction of ozone and mycorrhizal fungi on tomato as influenced by gungal species and host variety. Soil Biology and Biochemistry, 16, 425–427.

    Article  CAS  Google Scholar 

  • McGrath, S. P., Chaudri, A. M., & Giller, K. E. (2015). Long-term effects of metals in sewage sludge on soils, microorganisms and plants. Journal of Industrial Microbiology & Biotechnology, 14, 94–104.

    Article  Google Scholar 

  • Meharg, A. A., & Cairney, J. W. G. (2000). Ectomycorrhizas extending the capacities of rhizosphere remediation? Soil Biology and Biochemistry, 32, 1475–1484.

    Article  CAS  Google Scholar 

  • Meharg, A. A., & Hartley-Whitaker, J. (2002). Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. The New Phytologist, 154(1), 29–43.

    Article  CAS  Google Scholar 

  • Miller, R. M., Jastrow, J. D., & Reinhardt, D. R. (1995). External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia, 103(1), 17–23.

    Article  CAS  PubMed  Google Scholar 

  • Mocquot, B., Vangronsveld, J., Clijsters, H., & Mench, M. (1996). Copper toxicity in young maize (Zea mays L.) plants: Effects on growth, mineral and chlorophyll contents, and enzyme activities. Plant and Soil, 182, 287–300.

    Article  CAS  Google Scholar 

  • Morgan, P. B., Ainsworth, E. A., & Long, S. P. (2003). How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant, Cell & Environment, 26, 1317–1328.

    Article  CAS  Google Scholar 

  • Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Engineering Geology, 60, 193–207.

    Article  Google Scholar 

  • Navarro, J. M., Perez-Tornero, O., & Morte, A. (2013). Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. Journal of Plant Physiology, 171, 76–85.

    Article  PubMed  CAS  Google Scholar 

  • Netondo, G. W., Onyango, J. C., & Beck, E. (2004). Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Science, 44, 806–811.

    Article  Google Scholar 

  • Newman, E. I., & Reddell, P. (1987). The distribution of mycorrhizas among families of vascular plants. The New Phytologist, 106, 747.

    Article  Google Scholar 

  • Novoa, D., Palma, S., & Gaete, H. (2009). Effect of arbuscular mycorrhizal fungi Glomus spp. inoculation on alfalfa growth in soils with copper. Chilean Journal of Agricultural Research, 70, 259–265.

    Google Scholar 

  • Parniske, M. (2008). Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nature Reviews. Microbiology, 6, 763–775.

    Article  CAS  PubMed  Google Scholar 

  • Peterson, R. L., Massicotte, H. B., & Melville, L. H. (2004). Mycorrhizas: Anatomy and cell biology. Ottawa: NRC Research Press.

    Google Scholar 

  • Rangel, W. M., Schneider, J., Costa, E. T. S., Soares, C. R. F. S., Guilherme, L. R. G., & Moreira, F. M. S. (2014). Phytoprotective effect of arbuscular mycorrhizal fungi species against arsenic toxicity in tropical leguminous species. International Journal of Phytoremediation, 16, 840–858.

    Article  CAS  Google Scholar 

  • Rapti-Caputo, D. (2010). Influence of climatic changes and human activities on the salinization process of coastal aquifer systems. Italian Journal of Agronomy, 5(3), 67–79.

    Article  Google Scholar 

  • Regvar, M., Likar, M., Piltaver, A., Kugonic, N., & Smith, J. E. (2010). Fungal community structure under goat willows (Salix caprea L.) growing at metal polluted site: The potential of screening in a model phytostabilisation study. Plant and Soil, 330, 345–356.

    Article  CAS  Google Scholar 

  • Rehmann, K., Noll, H. P., Steinberg, C. E. W., & Kettrup, A. A. (1998). Pyrene degradation by Mycobacterium sp. strain KR2. Chemosphere, 36, 2977–2992.

    Article  CAS  PubMed  Google Scholar 

  • Repetto, O., Massa, N., Gianinazzi-Pearson, V., Dumas-Gaudot, E., & Berta, G. (2007). Cadmium effects on populations of root nuclei in two pea genotypes inoculated or not with the arbuscular mycorrhizal fungus Glomus mosseae. Mycorrhiza, 17(2), 111–120.

    Article  CAS  PubMed  Google Scholar 

  • Rilling, M. C., Hernandez, G. Y., & Newton, P. C. D. (2000). Arbuscular mycorrhizae respond to elevated atmospheric CO2 after long-term exposure: Evidence from a CO2 spring in New Zealand supports the resource balance model. Ecology Letters, 3, 475–478.

    Article  Google Scholar 

  • Rodrigues, C. R., & Rodrigues, B. F. (2015). Use of arbuscular mycorrhiza and organic amendments to enhance growth of Macaranga peltata (Roxb.) Müll. Arg. in iron ore mine wastelands. International Journal of Phytoremediation, 17(1–6), 485–492.

    Article  CAS  PubMed  Google Scholar 

  • Romanowska, E., Wroblewska, B., Drozak, A., & Siedlecka, M. (2006). High light intensity protects photosynthetic apparatus of pea plants against exposure to lead. Plant Physiology, 44, 387–394.

    CAS  Google Scholar 

  • Ruiz-Lozano, J. M., Azcon, R., & Gomez, M. (1996). Alleviation of salt stress by arbuscular mycorrhizal Glomus species in Lactuca sativa plants. Physiologia Plantarum, 98, 767–772.

    Article  CAS  Google Scholar 

  • Ruotsalainen, A. L., Markkola, A., & Kozlov, M. V. (2007). Root fungal colonisation in Deschampsia flexuosa: Effects of pollution and neighbouring trees. Environmental Pollution, 147, 723–728.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, P. R., Delhaize, E., & Jones, D. L. (2001). Function and mechanism of organic anion exudation from plant roots. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 527–560.

    Article  CAS  PubMed  Google Scholar 

  • Safir, G. R., & Nelsen, C. E. (1985). VA mycorrhizas: Plant and fungal water relations. In R. Molina (Ed.), Proceedings of the sixth North American conference on mycorrhizae (pp. 161–164). Corvallis: Forest Research Laboratory.

    Google Scholar 

  • Sanchez-Castro, I., Gianinazzi-Pearson, V., Cleyet-Marel, J. C., Baudoin, E., & van Tuinen, D. (2017). Glomeromycota communities survive extreme levels of metal toxicity in an orphan mining site. Science of the Total Environment, 598, 121–128.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, J., Sturmer, S. L., Guilherme, L. R. G., Moreira, F. M. S., & Soares, C. R. F. S. (2013). Arbuscular mycorrhizal fungi in arsenic-contaminated areas in Brazil. Journal of Hazardous Materials, 262, 1105–1115.

    Article  CAS  PubMed  Google Scholar 

  • Seki, M., Kamei, A., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2003). Molecular responses to drought, salinity and frost: Common and different paths for plant protection. Current Opinion in Biotechnology, 14, 194–199.

    Article  CAS  PubMed  Google Scholar 

  • Shahabivand, S., Maivan, H. Z., Goltapeh, E. M., Sharifi, M., & Aliloo, A. A. (2012). The effects of root endophyte and arbuscular mycorrhizal fungi on growth and cadmium accumulation in wheat under cadmium toxicity. Plant Physiology and Biochemistry, 60, 53–58.

    Article  CAS  PubMed  Google Scholar 

  • Sharifi, M., Ghorbanli, M., & Ebrahimzadeh, H. (2007). Improved growth of salinity stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. Journal of Plant Physiology, 164, 1144–1151.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, P., & Dubey, R. S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17, 35–52.

    Article  CAS  Google Scholar 

  • Sharma, P., & Dubey, R. S. (2007). Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic levels of aluminium. Plant Cell Reports, 26, 2027–2038.

    Article  CAS  PubMed  Google Scholar 

  • Sheikh-Assadi, M., Khandan-Mirkohi, A., Alemardan, A., & Moreno-Jiménez, E. (2015). Mycorrhizal limonium sinuatum (L.) mill. Enhances accumulation of lead and cadmium. International Journal of Phytoremediation, 17(1–6), 556–562.

    Article  CAS  PubMed  Google Scholar 

  • Singh, K. N., & Chatrath, R. (2001). Salinity tolerance. In M. P. Reynolds, M. Jio, & A. McNab (Eds.), Application of Physiology in Wheat Breeding (pp. 101–110). Mexico, DF: CIMMYT.

    Google Scholar 

  • Sircelj, H. M., Tausz, M., Grill, D., & Batic, F. (2005). Biochemical responses in leaves of two apple tree cultivars subjected to progressing drought. Journal of Plant Physiology, 162, 1308–1318.

    Article  CAS  PubMed  Google Scholar 

  • Skujins, J., & Allen, M. F. (1986). Use of mycorrhizae for land rehabilitation. Mircen Journal, 2, 161–176.

    Article  Google Scholar 

  • Soares, C. R. F. S., & Siqueira, J. O. (2008). Mycorrhiza and phosphate protection of tropical grass species against heavy metal toxicity in multi-contaminated soil. Biology and Fertility of Soils, 44, 833–841.

    Article  CAS  Google Scholar 

  • Somtrakoon, K., Suanjit, S., Pokethitiyook, P., Kruatrachue, M., Lee, H., & Upatham, S. (2008). Phenanthrene stimulates the degradation of pyrene and fluoranthene by Burkholderia sp. VUN10013. World Journal of Microbiology and Biotechnology, 24, 523–531.

    Article  CAS  Google Scholar 

  • Sut, M., Boldt-Burisch, K., & Raab, T. (2016). Possible evidence for contribution of arbuscular mycorrhizal fungi (AMF) in phytoremediation of iron–cyanide (Fe–CN) complexes. Ecotoxicology, 25(6), 1260–1269.

    Article  CAS  PubMed  Google Scholar 

  • Tang, X., Lou, C., Wang, S., Lu, Y., Liu, M., Hashmi, M. Z., & Fan, F. (2015). Effects of long-term manure applications on the occurrence of antibiotics and antibiotic resistance genes (ARGs) in paddy soils: Evidence from four field experiments in south of China. Soil Biology and Biochemistry, 90, 179–187.

    Article  CAS  Google Scholar 

  • Tiwari, S., & Sarangi, B. K. (2017). Comparative analysis of antioxidant response by Pteris vittata and Vetiveria zizanioides towards arsenic stress. Ecological Engineering, 100, 211–218.

    Article  Google Scholar 

  • Toljander, J. F., Lindahl, B. D., Paul, L. R., Elfstrand, M., & Finlay, R. D. (2007). Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiology Ecology, 61, 295–304.

    Article  CAS  PubMed  Google Scholar 

  • Toth, G., Hermann, T., Da Silva, M. R., & Montanarella, L. (2016). Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International, 88, 299–309.

    Article  CAS  PubMed  Google Scholar 

  • Toujaguez, R., Ono, F. B., Martins, V., Cabrera, P. P., Blanco, A. V., Bundschuh, J., & Guilherme, L. R. G. (2013). Arsenic bioaccessibility in gold mine tailings of Delita, Cuba. Journal of Hazardous Materials, 262, 1004–1013.

    Article  CAS  PubMed  Google Scholar 

  • Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., & Sheffield, J. (2014). Global warming and changes in drought. Nature Climate Change, 4, 17–22.

    Article  Google Scholar 

  • Treseder, K. K., & Allen, M. F. (2000). Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. The New Phytologist, 147, 189–200.

    Article  CAS  Google Scholar 

  • Van Dingenen, R., Raes, F., Krol, M. C., Emberson, L., & Cofala, J. (2009). The global impact of O3 on agricultural crop yields under current and future air quality legislation. Atmospheric Environment, 43, 604–618.

    Article  CAS  Google Scholar 

  • Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., Thewys, T., Vassilev, A., Meers, E., Nehnevajova, E., van der Lelie, D., & Mench, M. (2009). Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environmental Science and Pollution Research International, 16, 765–794.

    Article  CAS  PubMed  Google Scholar 

  • Wang, F. Y., Lin, X. G., & Yin, R. (2007a). Effect of arbuscular mycorrhizal fungal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soil. International Journal of Phytoremediation, 9, 345–353.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., Huang, X., Ma, F., Ho, S. H., Wu, J., & Zhu, S. (2017a). Role of Rhizophagus irregularis in alleviating cadmium toxicity via improving the growth, micro-and macroelements uptake in Phragmites australis. Environmental Science and Pollution Research, 24(4), 3593–3607.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Augé, R. M., & Toler, H. D. (2017b). Arbuscular mycorrhiza formation and its function under elevated atmospheric O3: A meta-analysis. Environmental Pollution, 226, 104–117.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S. G., Diao, X. J., Li, Y. W., & Ma, L. M. (2015). Effect of Glomus aggregatum on photosynthetic function of snap bean in response to elevated ozone. The Journal of Agricultural Science, 153, 837–852.

    Article  CAS  Google Scholar 

  • Wang, S. G., Feng, Z. Z., Wang, X. K., & Gong, W. L. (2011). Arbuscular mycorrhizal fungi alter the response of growth and nutrient uptake of snap bean (Phaseolus vulgaris L.) to O3. Journal of Environmental Sciences, 23, 968–974.

    Article  CAS  Google Scholar 

  • Wang, X. K., Manning, W. J., Feng, Z. W., & Zhu, Y. G. (2007b). Ground-level ozone in China: Distribution and effects on crop yields. Environmental Pollution, 147, 394–400.

    Article  CAS  PubMed  Google Scholar 

  • Wen, Z., Shi, L., Tang, Y., Shen, Z., Xia, Y., & Chen, Y. (2017). Effects of Pisolithus tinctorius and Cenococcum geophilum inoculation on pine in copper-contaminated soil to enhance phytoremediation. International Journal of Phytoremediation, 19(4), 387–394.

    Article  CAS  PubMed  Google Scholar 

  • Wery, J., Silim, S. N., Knights, E. J., Malhotra, R. S., & Cousin, R. (1994). Screening techniques and sources and tolerance to extremes of moisture and air temperature in cool season food legumes. Euphytica, 73, 73–83.

    Article  Google Scholar 

  • White, C., Sayer, J. A., & Gadd, G. M. (1997). Microbial solubilization and immobilization of toxic metals: Key biogeochemical processes for treatment of contamination. FEMS Microbiology Reviews, 20, 503–516.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Q. S., Zou, Y. N., & He, X. H. (2010). Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiologiae Plantarum, 32, 297–304.

    Article  CAS  Google Scholar 

  • Xu, P., Christie, P., Liu, Y., Zhang, J., & Li, X. (2008). The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake. Environmental Pollution, 156, 215–220.

    Article  CAS  PubMed  Google Scholar 

  • Xun, F., Xie, B., Liu, S., & Guo, C. (2015). Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environmental Science and Pollution Research International, 22(1), 598–608.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Liang, Y., Han, X., Chiu, T. Y., Ghosh, A., Chen, H., & Tang, M. (2016). The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil. Scientific Reports, 6, 20469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, N., Zhang, Z., Wang, L., & Qian, K. (2016). Variations in organic carbon, aggregation, and enzyme activities of gangue-fly ash-reconstructed soils with sludge and arbuscular mycorrhizal fungi during 6-year reclamation. Environmental Science and Pollution Research International, 23(17), 17840–17849.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J. K., Hasegawa, P. M., & Bressan, R. A. (1997). Molecular aspects of osmotic stress in plants. CRC Critical Reviews in Plant Sciences, 16, 253–277.

    Article  CAS  Google Scholar 

  • Zhu, Y. G., Christie, P., & Laidlaw, A. S. (2001). Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. Chemosphere, 42, 193–199.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Rahul Singh Rajput is grateful to UGC for providing RET Fellowship as a source of financial assistance. HB Singh is grateful to DST for providing funding under grant (BT/PR5990/AGR/5/587/2012).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ram, R.M., Kalita, P.J., Rajput, R.S., Singh, H.B. (2019). Mycorrhiza Based Approaches for Soil Remediation and Abiotic Stress Management. In: Varma, A., Choudhary, D. (eds) Mycorrhizosphere and Pedogenesis. Springer, Singapore. https://doi.org/10.1007/978-981-13-6480-8_17

Download citation

Publish with us

Policies and ethics