The Mycorrhizoshpere Effect on Pedogenesis and Terrestrial Biomes

  • Sanjukta Dey
  • Rabindranath Bhattacharyya


Microorganisms are ubiquitous in nature and soil is no exception. Plenty of microbes are present as conglomerate population in soil. Many of these microbes enter into symbiotic mutualism with vascular land plants. Of special interest is the symbiosis between land plants and members of kingdom Fungi. The association is known as mycorrhizae. According to Rambelli (Ectomycorrhizae. Academic, New York, 1973), the soil and its associated microbiota under the influence of mycorrhizae is known as mycorrhizosphere and it is an area of dynamic interaction among the mycorrhizal fungi and soil microbiota of the mycorrhizosphere that drives pedogenesis and determines terrestrial biome diversity of the ecosystem through nutrient cycling and biogeochemical cycles. Extensive work has been carried out in the last few decades on role of mycorrhiza in pedogenesis and as a mediator of ecosystem diversity but these two important aspects have been dealt with separately by various authors. This review aims at dealing with the two processes together and thus have a comprehensive review literature on how this symbiosis drives pedogenesis and determines terrestrial biome of a particular ecosystem.


  1. Aber, J. D., Goodale, C. L., Ollinger, S. V., Smith, M. L., Magill, A. H., Martin, M. E., Hallett, R. A., & Stoddard, J. L. (2003). Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience, 53, 375–389.CrossRefGoogle Scholar
  2. Albornoz, F. E., Lambers, H., Turner, B. L., Teste, F. P., & Laliberté, E. (2016). Shifts in symbiotic associations in plants capable of forming root symbioses across a long-term soil chronosequence. Ecology and Evolution, 6, 2368–2377.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Allen, M. F., Klironomos, J. N., Treseder, K. K., & Oechel, W. C. (2005). Responses of soil biota to elevated CO2 in a chaparral ecosystem. Ecological Applications, 15, 1701–1711.CrossRefGoogle Scholar
  4. Ames, R. N., Reid, C. P. P., & Ingham, E. R. (1984). Rhizosphere bacterial population responses to root colonization by vesicular-arbuscular mycorrhizal fungus. The New Phytologist, 96, 555–563.CrossRefGoogle Scholar
  5. Bagyaraj, D. J., & Menge, J. A. (1978). Interaction between VA Mycorrhiza and Azotobacter and their effects on rhizosphere microflora and plant growth. The New Phytologist, 80, 567–573.CrossRefGoogle Scholar
  6. Beerling, D. (2007). The Emerald planet. How plants changed earth’s history (288 pages). Oxford: Oxford University Press.Google Scholar
  7. Berner, R. A. (2006). GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta, 70, 5653–5664.CrossRefGoogle Scholar
  8. Bowen, G. D., & Theodorou, C. T. (1979). Interactions between bacteria and ectomycorrhizal fungi. Soil Biology and Biochemistry, 11, 119–126.CrossRefGoogle Scholar
  9. Brantley, S. L., Megonigal, J. P., Scatena, F. N., Balogh-Brunstad, Z., Barnes, R. T., Bruns, M. A., Van Cappellen, P., Dontsova, K., Hartnett, H. E., Hartshorn, A. S., Heimsath, A., Herndon, E., Jin, L., Keller, C. K., Leake, J. R., McDowell, W. H., Meinzer, F. C., Mozdzer, T. J., Petsch, S., Pett-Ridge, J., Pregitzer, K. S., Raymond, P. A., Riebe, C. S., Shumaker, K., Sutton-Grier, A., Walter, R., & Yoo, K. (2011). Twelve testable hypotheses on the geobiology of weathering. Geobiology, 9, 140–165.Google Scholar
  10. Brundrett, M. C. (2002). Coevolution of roots and mycorrhizae of land plants. The New Phytologist, 154, 275–304.CrossRefGoogle Scholar
  11. Butler, S. M., Melillo, J. M., Johnson, J., Mohan, J., Steudler, P. A., Lux, H., Burrows, E., Smith, R., Vario, C., & Scott, L. (2012). Soil warming alters nitrogen cycling in a New England forest: Implications for ecosystem function and structure. Oecologia, 168, 819–828.PubMedCrossRefGoogle Scholar
  12. Cheng, L., Booker, F. L., Tu, C., Burkey, K. O., Zhou, L., Shew, H. D., Rufty, T. W., & Hu, S. (2012). Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science, 337, 1084–1087.PubMedCrossRefGoogle Scholar
  13. Chung, H., Zak, D. R., & Lilleskov, E. A. (2006). Fungal community composition and metabolism under elevated CO2 and O3. Oecologia, 147, 143.PubMedCrossRefGoogle Scholar
  14. Clark, N. M., Rillig, M. C., & Nowak, R. S. (2009). Arbuscular mycorrhizal fungal abundance in the Mojave Desert: Seasonal dynamics and impacts of elevated CO2. Journal of Arid Environments, 73, 834–843.CrossRefGoogle Scholar
  15. Clemmensen, K. E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A., Wallander, H., Stenlid, J., Finlay, R. D., Wardle, D. A., & Lindahl, B. D. (2013). Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science, 339, 1615–1618.CrossRefGoogle Scholar
  16. Compant, S., Van Der Heijden, M. G., & Sessitsch, A. (2010). Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiology Ecology, 73, 197–214.PubMedGoogle Scholar
  17. Conley, D. J., & Carey, J. C. (2015). Silica cycling over geologic time. Nature Geoscience, 8, 431–432.CrossRefGoogle Scholar
  18. De La Rosa, T. M., Aphalo, P. J., & Lehto, T. (2003). Effects of ultraviolet-B radiation on growth, mycorrhizae and mineral nutrition of silver birch (Betula pendula Roth) seedlings grown in low-nutrient conditions. Global Change Biology, 9, 65–73.CrossRefGoogle Scholar
  19. Duponnois, R., & Garbaye, J. (1991). Effect of dual inoculation of Douglas fir with the ectomycorrhizal fungus Laccaria laccata and mycorrhization helper bacteria (MHB) in two bare-root forest nurseries. Plant and Soil, 138, 169–176.CrossRefGoogle Scholar
  20. Eom, A. H., Hartnett, D. C., Wilson, G. W., & Figge, D. A. (1999). The effect of fire, mowing and fertilizer amendment on arbuscular mycorrhizae in tallgrass prairie. The American Midland Naturalist, 142, 55–70.CrossRefGoogle Scholar
  21. Filippelli, G. (2008). The global phosphorus cycle: Past, present, and future. Elements, 4, 89–95.CrossRefGoogle Scholar
  22. Finzi, A. C., Norby, R. J., Calfapietra, C., Gallet-Budynek, A., Gielen, B., Holmes, W. E., Hoosbeek, M. R., Iversen, C. M., Jackson, R. B., Kubiske, M. E., Ledford, J., Liberloo, M., Oren, R., Polle, A., Pritchard, S., Zak, D. R., Schlesinger, W. H., & Ceulemans, R. (2007). Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proceedings of the National Academy of Sciences USA, 104, 14014–14019.CrossRefGoogle Scholar
  23. Founoune, H., Duponnois, R., Bâ, A. M., & El Bouami, F. (2002). Influence of the dual arbuscular endomycorrhizal/ectomycorrhizal symbiosis on the growth of Acacia holosericea (A. Cunn. ex G. Don) in glasshouse conditions. Annals of Forest Science, 59, 93–98.CrossRefGoogle Scholar
  24. Frey-Klett, P., et al. (1999). Dose effect in the dual inoculation of an ectomycorrhizal fungus and a mycorrhiza helper bacterium in two forest nurseries. Soil Biology and Biochemistry, 31, 1555–1562.CrossRefGoogle Scholar
  25. Garcia, M. O., Ovasapyan, T., Greas, M., & Treseder, K. K. (2008). Mycorrhizal dynamics under elevated CO2 and nitrogen fertilization in a warm temperate forest. Plant and Soil, 303, 301–310.CrossRefGoogle Scholar
  26. Haselwandter, K. (2008). Structure and function of siderophores produced by mycorrhizal fungi. Mineralogical Magazine, 72, 61–64.CrossRefGoogle Scholar
  27. Heinemeyer, A., & Fitter, A. H. (2004). Impact of temperature on the arbuscular mycorrhizal (AM) symbiosis: Growth responses of the host plant and its AM fungal partner. Journal of Experimental Botany, 55(396), 525–534.PubMedCrossRefGoogle Scholar
  28. Hiederer, R., & Köchy, M. (2011). Global soil organic carbon estimates and the harmonized world soil database (EUR 25225 EN). Luxembourg: Publications Office of the EU.Google Scholar
  29. Hiltner, L. (1904). Überneuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologieunterbesonderer Berücksichtigung der Gründüngung und Brache. Arbeiten der DLG, 98, 59–78.Google Scholar
  30. Humphreys, C. P., Franks, P. J., Rees, M., Bidartondo, M. I., Leake, J. R., & Beerling, D. J. (2010). Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nature Communications, 1, 7.CrossRefGoogle Scholar
  31. IPCC. (2007). In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate change 2007 – The physical science basis: Working Group I contribution to the fourth assessment report of the IPCC. Cambridge: Cambridge University Press.Google Scholar
  32. Jenny, H. (1941). Factors of soil formation – A system of quantitative pedology. New York: McGraw-Hill.Google Scholar
  33. Jenny, H. (1980). The soil resource, origin and behavior. New York/Heidelberg/Berlin: Springer.CrossRefGoogle Scholar
  34. Johnson, N. C., & Gehring, C. A. (2007). Chapter-4 mycorrhizae: Symbiotic mediators of rhizosphere and ecosystem processes. In Z. G. Cardon & J. L. Whitbeck (Eds.), The rhizosphere: An ecological perspective. Amsterdam: Elsevier Academic Press.Google Scholar
  35. Johnson, N. C., Graham, J. H., & Smith, F. A. (1997). Functioning of mycorrhizal associations along the mutualism-parasitism continuum. The New Phytologist, 135, 575–585.CrossRefGoogle Scholar
  36. Johnson, N. C., Wolf, J., Reyes, M. A., Panter, A., Koch, G. W., & Redman, A. (2005). Species of plants and associated arbuscular mycorrhizal fungi mediate mycorrhizal responses to CO2 enrichment. Global Change Biology, 11, 1156–1166.CrossRefGoogle Scholar
  37. Johnson, N. C., Caroline Angelard, I. R. S., & Kiers, E. T. (2013). Predicting community and ecosystem outcomes of mycorrhizal responses to global change. Ecology Letters, 16, 140–153.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Jumpponen, A., Trowbridge, J., Mandyam, K., & Johnson, L. (2005). Nitrogen enrichment causes minimal changes in arbuscular mycorrhizal colonization but shifts community composition-evidence from rDNA data. Biology and Fertility of Soils, 41, 217–224.CrossRefGoogle Scholar
  39. Kasurinen, A., Helmisaari, H. S., & Holopainen, T. (1999). The influence of elevated CO2 and O3 on fine roots and mycorrhizae of naturally growing young Scots pine trees during three exposure years. Global Change Biology, 5, 771–780.CrossRefGoogle Scholar
  40. Katznelson, H., Rouatt, J. W., & Peterson, E. A. (1962). The rhizosphere effect of mycorrhizal and non mycorrhizal roots of yellow birch seedlings. Canadian Journal of Botany, 40, 377–382.CrossRefGoogle Scholar
  41. Klironomos, J. N., & Allen, M. F. (1995). UV-B-mediated changes on below-ground communities associated with the roots of Acer saccharum. Functional Ecology, 9, 923–930.CrossRefGoogle Scholar
  42. Krishna, K. R., Balakrishna, A. N., & Bagyaraj, D. J. (1982). Interaction between a vesicular-arbuscular mycorrhizal fungus and Streptomyces cinnamomeous and their effects on finger millet. The New Phytologist, 92, 401–405.CrossRefGoogle Scholar
  43. Kristian, R. A., Riikka, R., Helge, R. P., Teis, N. M., Kirsten, B. H., Marie, F. A., & Anders, M. (2008). Solar Ultraviolet-B radiation at Zackenberg: The impact on higher plants and soil microbial communities. Advances in Ecological Research, 40, 421–440.CrossRefGoogle Scholar
  44. Laing, W. A. (1991). The consequences of increased ultraviolet-B radiation for plants. DSIR Fruit and Trees Internal Report, 206.Google Scholar
  45. Leake, J. R., & Read, D. J. (2017). Chapter-2 Mycorrhizal symbioses and pedogenesis throughout earth’s history. In N. C. Johnson, C. Gehring, & J. Jansa (Eds.), Mycorrhizal mediation of soil. Amsterdam: Elsevier.Google Scholar
  46. Leake, J. R., Johnson, D., Donnelly, D., Muckle, G. E., Boddy, L., & Read, D. J. (2004). Networks of power and influence: The role of mycorrhizal mycelium in controlling plant communities and agro-ecosystem functioning. Canadian Journal of Botany, 82, 1016–1045.CrossRefGoogle Scholar
  47. Leake, J. R., Duran, A. L., Hardy, K. E., Johnson, I., Beerling, D. J., Banwart, S. A., & Smits, M. M. (2008). Biological weathering in soil: The role of symbiotic root-associated fungi biosensing minerals and directing photosynthate-energy into grain-scale mineral weathering. Mineralogical Magazine, 72, 85–89.CrossRefGoogle Scholar
  48. Li, C. Y., & Castellano, M. A. (1985). Nitrogen-fixing bacteria isolated from within sporocarps of three ectomycorrhizal fungi. In: Proceedings of the 6th North American coference on mycorrhizae (p. 264), June 25–29, 1984, Bend.Google Scholar
  49. Lilleskov, E. A., Fahey, T. J., & Lovett, G. M. (2001). Ectomycorrhizal fungal aboveground community change over an atmospheric nitrogen deposition gradient. Ecological Applications, 11, 397–410.CrossRefGoogle Scholar
  50. Linderman, R. G. (1988). Mycorrhizal interactions with the rhizosphere microflora: The mycorrhizosphere effect. Paper presented at symposium: Interaction of Mycorrhizal Fungi, Aps Symp Ser.Google Scholar
  51. Meyer, J. R., & Linderman, R. G. (1986). Response of subterranean clover to dual inoculation with vesicular-arbuscular mycorrhizal fungi and a plant growth-promoting bacterium, Pseudomonas putida. Soil Biology and Biochemistry, 18(2), 185–190.CrossRefGoogle Scholar
  52. Miller, R. M., & Jastrow, J. D. (2000). Mycorrhizal fungi influence soil structure. In Y. Kapulnik & D. D. Douds Jr. (Eds.), Arbuscular mycorrhizae: Physiology and function (pp. 3–18). London: Kluwer Academic Publishers.CrossRefGoogle Scholar
  53. Mohan, J. E., Clark, J. S., & Schlesinger, W. H. (2007). Long-term CO2 enrichment of a forest ecosystem: Implications for forest regeneration and succession. Ecological Applications, 17, 1198–1212.PubMedCrossRefGoogle Scholar
  54. Mohan, J. E., Cowden, C. C., Baas, P., Dawadi, A., Frankson, P. T., Helmick, K., Hughes, E., Khan, S., Lang, A., Machmuller, M., Taylor, M., & Witt, C. A. (2014). Mycorrhizal fungi mediation of terrestrial Ecosystem responses to global change: Mini-review. Fungal Ecology, 10, 3–19. Science Direct. Elsevier.Google Scholar
  55. Neal, J. L. Jr., Lu, K. C., Bollen, W. B., & Trappe, J. M. (1968). A comparison of rhizosphere microfloras associated with mycorrhizae of red alder and Douglas-fir. Pager 57–71 In: J. M. Trappe, J. F. Franklin, R. F. Tarrant & G. M. Hansen (Eds.), Biology of Alder. USDA Forest Service, Pacific Northwest Forest and Range Experiment Station (292 pp).Google Scholar
  56. Neal Jr, J. L., Lu, K. C., Bollen, W. B., & Trappe, J. M. (1967, April). A comparison of rhizosphere microfloras associated with mycorrhizae of red alder and Douglas-fir. In Biology of Alder, Proceedings of Northwest Scientific Association Annual Meeting.Google Scholar
  57. Olsrud, M., Carlsson, B. A., Svensson, B. M., Michelsen, A., & Melillo, J. M. (2010). Responses of fungal root colonization, plant cover and leaf nutrients to long-term exposure to elevated atmospheric CO2 and warming in a subarctic birch forest understory. Global Change Biology, 16, 1820–1829.CrossRefGoogle Scholar
  58. Olssen, P. A., Hammer, E. C., Pallon, J., & Van Aarle, I. M. (2011). Elemental composition in vesicles of an arbuscular mycorrhizal fungus, as revealed by PIXE analysis. Fungal Biology-UK, 115, 643–648.CrossRefGoogle Scholar
  59. Oswald, E. T., & Ferchau, H. A. (1968). Bacterial association of coniferous mycorrhizae. Plant and Soil, 28, 187–192.CrossRefGoogle Scholar
  60. Pardo, L. H., Fenn, M. E., Goodale, C. L., Geiser, L. H., Driscoll, C. T., Allen, E. B., Baron, J. S., Bobbink, R., Bowman, W. D., Clark, C. M., Emmett, B., Gilliam, F. S., Greaver, T. L., Hall, S. J., Lilleskov, E. A., Liu, L. L., Lynch, J. A., Nadelhoffer, K. J., Perakis, S. S., Robin-Abbott, M. J., Stoddard, J. L., Weathers, K. C., & Dennis, R. L. (2011). Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecological Applications, 21, 3049–3082.CrossRefGoogle Scholar
  61. Parrent, J. L., & Vilgalys, R. (2007). Biomass and compositional responses of ectomycorrhizal fungal hyphae to elevated CO2 and nitrogen fertilization. The New Phytologist, 176, 164–174.PubMedCrossRefGoogle Scholar
  62. Peterjohn, W. T., Melillo, J. M., Steudler, P. A., Newkirk, K. M., Bowles, F. P., & Aber, J. D. (1994). Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecological Applications, 4, 617–625.CrossRefGoogle Scholar
  63. Phillips, J. D. (2009). Biological energy in landscape evolution. American Journal of Science, 309, 271–290.CrossRefGoogle Scholar
  64. Pirozynski, K. A., & Malloch, D. W. (1975). The origin of land plants: A matter of mycotrophism. Biosystems, 6, 153–164.PubMedCrossRefGoogle Scholar
  65. Quirk, J., Leake, J. R., Banwart, S. A., Taylor, L. L., & Beerling, D. J. (2014). Weathering by tree-root-associating fungi diminishes under simulated Cenozoic atmospheric CO2 decline. Biogeosciences, 11, 321–331.CrossRefGoogle Scholar
  66. Quirk, J., Leake, J. R., Johnson, D. A., Taylor, L. L., Saccone, L., & Beerling, D. J. (2015). Constraining the role of early land plants in Palaeozoic weathering and global cooling. Proceedings of the Royal Society B, 282, 20151115. Scholar
  67. Rambelli, A. (1973). The rhizosphere of mycorrhizae. In G. L. Marks & T. T. Koslowski (Eds.), Ectomycorrhizae (pp. 299–343). New York: Academic.CrossRefGoogle Scholar
  68. Read, D. J. (1991). Mycorrhizae in ecosystems. Experientia, 47, 376–391.CrossRefGoogle Scholar
  69. Reay, D. S., Dentener, F., Smith, P., Grace, J., & Feely, R. A. (2008). Global nitrogen deposition and carbon sinks. Nature Geoscience, 1, 430–437.CrossRefGoogle Scholar
  70. Reboredo, F., & Lidon, F. J. C. (2012). UV-B radiation effects on terrestrial plants – A perspective. Emirates Journal of Food and Agriculture, 24, 502–509.CrossRefGoogle Scholar
  71. Redecker, D., Kodner, R., & Graham, L. E. (2000). Glomalean fungi from the Ordovician. Science, 289, 1920–1921.CrossRefGoogle Scholar
  72. Rillig, M. C., Field, C. B., & Allen, M. F. (1999). Soil biota responses to long-term atmospheric CO2 enrichment in two California annual grasslands. Oecologia, 119, 572–577.PubMedCrossRefGoogle Scholar
  73. Scharlemann, J. P. W., Tanner, E. V. J., Hiederer, R., & Kapos, V. (2014). Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Management, 5, 81–91.CrossRefGoogle Scholar
  74. Schisler, D. A., & Linderman, R. G. (1989). Influence of humic-rich organic amendments to coniferous nursery soils on Douglas-fir growth, damping-off and associated soil microorganisms. Soil Biology and Biochemistry, 21(3), 403–408.CrossRefGoogle Scholar
  75. Siguenza, C., Corkidi, L., & Allen, E. B. (2006a). Feedbacks of soil inoculum of mycorrhizal fungi altered by N deposition on the growth of a native shrub and an invasive annual grass. Plant and Soil, 286, 153–165.CrossRefGoogle Scholar
  76. Siguenza, C., Crowley, D. E., & Allen, E. B. (2006b). Soil microorganisms of a native shrub and exotic grasses along a nitrogen deposition gradient in southern California. Applied Soil Ecology, 32, 13–26.CrossRefGoogle Scholar
  77. Smith, S. E., & Read, D. J. (1997). Mycorrhizal symbiosis. New York: Academic.Google Scholar
  78. Soudzilovskaia, N. A., Douma, J. C., Akhmetzhanova, A. A., Bodegom, P. M., Cornwell, W. K., Moens, E. J., Treseder, K. K., Tibbett, M., Wang, Y. P., & Cornelissen, J. H. C. (2015). Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry. Global Ecology and Biogeography, 24, 371–382.CrossRefGoogle Scholar
  79. Stubblefield, S. P., Taylor, T. N., & Trappe, J. M. (1987). Fossil mycorrhizae: A case for symbiosis. Science, 237, 59–60.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Taylor, L. L., Leake, J. R., Quirk, J., Hardy, K., Banwart, S. A., & Beerling, D. J. (2009). Biological weathering and the longterm carbon cycle: Integrating mycorrhizal evolution and function into the current paradigm. Geobiology, 7, 171–191.CrossRefGoogle Scholar
  81. Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate Research, 47, 123–138.CrossRefGoogle Scholar
  82. Trenberth, K. E., Smith, L., Qian, T., Dai, A., & Fasullo, J. (2007). Estimates of the global water budget and its annual cycle using observational and model data. Journal of Hydrometeorology, 8, 758–769.CrossRefGoogle Scholar
  83. Turner, B. L., Lambers, H., Condron, L. M., Cramer, M. D., Leake, J. R., Richardson, A. E., & Smith, S. E. (2013). Soil microbial biomass and the fate of phosphorus during long-term ecosystem development. Plant and Soil, 367, 225–234.CrossRefGoogle Scholar
  84. van Breemen, N., Finlay, R., Lundström, U., Jongmans, A. G., Giesler, R., & Olsson, M. (2000). Mycorrhizal weathering: A true case of mineral plant nutrition? Biogeochemistry, 49(1), 53–67.CrossRefGoogle Scholar
  85. van de Staaij, J., Rozema, J., van Beem, A., & Aerts, R. (2001). Increased solar UV-B radiation may reduce infection by arbuscular mycorrhizal fungi (AMF) in dune grassland plants: Evidence from five years of field exposure. Plant Ecology, 154(1–2), 169.CrossRefGoogle Scholar
  86. van der Heijden, M. G. A., Klironomos John, N., Margot, U., Peter, M., Ruth, S.-E., Thomas, B., Andres, W., & Sanders, I. R. (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69–72.CrossRefGoogle Scholar
  87. Vitousek, P. M., Mooney, H. A., Lubchenco, J., & Melillo, J. M. (1997). Human domination of Earth’s ecosystems. Science, 277, 494–499.CrossRefGoogle Scholar
  88. Vohník, M., Burdíková, Z., Albrechtová, J., & Vosátka, M. (2009). Testate Amoebae (Arcellinida and Euglyphida) vs. Ericoid Mycorrhizal and DSE fungi: A possible novel interaction in the Mycorrhizosphere of Ericaceous plants? Microbial Ecology, 57, 203–214.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Walker, T. W., & Syers, J. K. (1976). The fate of phosphorus during pedogenesis. Geoderma, 15, 1–19.CrossRefGoogle Scholar
  90. Zhang, L., Fan, J., Ding, X., He, X., Zhang, F., & Feng, G. (2014). Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biology and Biochemistry, 74, 177–183.CrossRefGoogle Scholar
  91. Zhang, L., Xu, M., Liu, Y., Zhang, F., Hodge, A., & Feng, G. (2016). Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. The New Phytologist, 210, 1022–1032.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sanjukta Dey
    • 1
  • Rabindranath Bhattacharyya
    • 2
  1. 1.Department of Botany, School of Life Science and BiotechnologyAdamas UniversityBarasatIndia
  2. 2.Department of Life Sciences (Plant Science Section)Presidency UniversityKolkataIndia

Personalised recommendations