Mycoremediation of Environmental Pollutants from Contaminated Soil

  • Prem Chandra
  • Enespa


Organic and inorganic of xenobiotic compounds in soil is a serious problem mostly in industrialized countries, it caused diffuse and acute contamination on a global scale in soil and water. Various persistent organic pollutants (POPs) degraded and transforms by the fungi. A mutualistic associations formed by the fungi and mycorrhizal fungi with various plant species in the rhizospheric regions. The association of fungi with plants biotransforms and biodegrade the hazardous contaminants in the soil. The species of white rot fungi such as Pleurotus ostreatus, Pleurotus sajorcaju, Pleurotus tuberregium, Pleurotus pulmonarius and Bjerkandera adusta have more potential comparison to other species. The wide range of organic molecules released extracellular lignin modifying enzymes are very effective in degrading of organic molecules. The lignin-peroxidases (LiP), manganese peroxidases (MnP), and other H2O2 producing and laccase enzymes present in the microbial system employed for degrading of lignin. This chapter covered various fungal species for biodegradation and transformation of environmental contaminants by enzymes and biomass.


Mycoremediation Fungi Bioremediation Heavy metals PAHs 


  1. Abrahams, P. W. (2002). Soils: Their implications to human health. Science of the Total Environment, 291(1–3), 1–32.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Abril, N., Gion, J. M., Kerner, R., Müller-Starck, G., Cerrillo, R. M. N., Plomion, C., & Jorrin-Novo, J. V. (2011). Proteomics research on forest trees, the most recalcitrant and orphan plant species. Phytochemistry, 72(10), 1219–1242.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Abuhussein, A. (2018). Wastewater refining and reuse and city-level water decision making.. Electronic Thesis and Dissertation Repository. 5310. Scholar
  4. Adenipekun, C. O., & Lawal, R. (2012). Uses of mushrooms in bioremediation: A review. Biotechnology and Molecular Biology Reviews, 7(3), 62–68.Google Scholar
  5. Adenipekun, C. O., Ipeaiyeda, A. R., Olayonwa, A. J., & Egbewale, S. O. (2015). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) in spent and fresh cutting fluids contaminated soils by Pleurotus pulmonarius (Fries). Quelet and Pleurotus ostreatus (Jacq.) Fr. P. Kumm. African Journal of Biotechnology, 14(8), 661–667.CrossRefGoogle Scholar
  6. Ahemad, M., & Kibret, M. (2013). Recent trends in microbial biosorption of heavy metals: A review. Biochemistry and Molecular Biology, 1(1), 19–26.CrossRefGoogle Scholar
  7. Ahsan, N., Renaut, J., & Komatsu, S. (2009). Recent developments in the application of proteomics to the analysis of plant responses to heavy metals. Proteomics, 9(10), 2602–2621.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Alam, A., & Pantola, R. C. (2016). Intracellular copper accumulation and biochemical changes in response to Cu induced oxidative stress in brassica species. San Francisco: GRIN Publishing.Google Scholar
  9. Alam, M. N., Bristi, N. J., & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 21(2), 143–152.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Alloway, B. J. (2013). Sources of heavy metals and metalloids in soils. In Heavy metals in soils (pp. 11–50). Dordrecht: Springer.CrossRefGoogle Scholar
  11. Alluri, H. K., Ronda, S. R., Settalluri, V. S., Bondili, J. S., Suryanarayana, V., & Venkateshwar, P. (2007). Biosorption: An eco-friendly alternative for heavy metal removal. African Journal of Biotechnology, 6(25), 2924–2931.CrossRefGoogle Scholar
  12. Alvarez, A., Saez, J. M., Costa, J. S. D., Colin, V. L., Fuentes, M. S., Cuozzo, S. A., Benimeli, C. S., Polti, M. A., & Amoroso, M. J. (2017). Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere, 166, 41–62.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Anastasi, A., Tigini, V., & Varese, G. C. (2013). The bioremediation potential of different ecophysiological groups of fungi. In Fungi as bioremediators (pp. 29–49). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  14. Anasonye, F., Winquist, E., Räsänen, M., Kontro, J., Björklöf, K., Vasilyeva, G., Jørgensen, K. S., Steffen, K. T., & Tuomela, M. (2015). Bioremediation of TNT contaminated soil with fungi under laboratory and pilot scale condition. International Biodeterioration and Biodegradation., 105, 7–12.CrossRefGoogle Scholar
  15. Andreoni, V., & Gianfreda, L. (2007). Bioremediation and monitoring of aromatic-polluted habitats. Applied Microbiology and Biotechnology, 76(2), 287–308.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Arantes, V., Jellison, J., & Goodell, B. (2012). Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Applied Microbiology and Biotechnology, 94(2), 323–338.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Arnold, A. E. (2007). Understanding the diversity of foliar endophytic fungi: Progress, challenges, and frontiers. Fungal Biology Reviews, 21(2–3), 51–66.CrossRefGoogle Scholar
  18. Ayangbenro, A. S., & Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: A review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14(1), 94.PubMedCentralCrossRefGoogle Scholar
  19. Azaizeh, H., Castro, P. M., & Kidd, P. (2011). Biodegradation of organic xenobiotic pollutants in the rhizosphere. In Organic xenobiotics and plants (pp. 191–215). Dordrecht: Springer.CrossRefGoogle Scholar
  20. Azmi, W., Sani, R. K., & Banerjee, U. C. (1998). Biodegradation of triphenylmethane dyes. Enzyme and Microbial Technology, 22(3), 185–191.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Baghour, M. (2017). Effect of seaweeds in phytoremediation. Biotechnological applications of seaweeds (pp. 47–83). New York: Nova Science Publishers.Google Scholar
  22. Bahn, Y. S., Xue, C., Idnurm, A., Rutherford, J. C., Heitman, J., & Cardenas, M. E. (2007). Sensing the environment: Lessons from fungi. Nature Reviews Microbiology, 5(1), 57.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Baldrian, P. (2003). Interactions of heavy metals with white-rot fungi. Enzyme and Microbial Technology, 32(1), 78–91.CrossRefGoogle Scholar
  24. Bamforth, S. M., & Singleton, I. (2005). Bioremediation of polycyclic aromatic hydrocarbons: Current knowledge and future directions. Journal of Chemical Technology and Biotechnology, 80(7), 723–736.CrossRefGoogle Scholar
  25. Beckham, G. T., Johnson, C. W., Karp, E. M., Salvachúa, D., & Vardon, D. R. (2016). Opportunities and challenges in biological lignin valorization. Current Opinion in Biotechnology, 42, 40–53.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Bezalel, L., Hadar, Y., & Cerniglia, C. E. (1997). Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus Pleurotus ostreatus. Applied and Environmental Microbiology, 63(7), 2495–2501.PubMedPubMedCentralGoogle Scholar
  27. Bisht, S., Pandey, P., Bhargava, B., Sharma, S., Kumar, V., & Sharma, K. D. (2015). Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Brazilian Journal of Microbiology, 46(1), 7–21.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Bolan, N. S., Choppala, G., Kunhikrishnan, A., Park, J., & Naidu, R. (2013). Microbial transformation of trace elements in soils in relation to bioavailability and remediation. In Reviews of environmental contamination and toxicology (pp. 1–56). New York, NY: Springer.Google Scholar
  29. Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., & Scheckel, K. (2014). Remediation of heavy metal(loid)s contaminated soils–to mobilize or to immobilize. Journal of Hazardous Materials, 266, 141–166.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Brookes, P. C. (1995). The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils, 19(4), 269–279.CrossRefGoogle Scholar
  31. Brosnan, J. T., & Brosnan, M. E. (2006). The sulfur-containing amino acids: An overview. The Journal of Nutrition, 136(6), 1636S–1640S.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Brundrett, M. C. (2009). Mycorrhizal associations and other means of nutrition of vascular plants: Understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil, 320(1–2), 37–77.CrossRefGoogle Scholar
  33. Bugg, T. D., Ahmad, M., Hardiman, E. M., & Rahmanpour, R. (2011). Pathways for degradation of lignin in bacteria and fungi. Natural Product Reports, 28(12), 1883–1896.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Cabral, L., Soares, C. R. F. S., Giachini, A. J., & Siqueira, J. O. (2015). Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: Mechanisms and major benefits of their applications. World Journal of Microbiology and Biotechnology, 31(11), 1655–1664.PubMedCrossRefGoogle Scholar
  35. Camacho-Morales, R. L., Guillén-Navarro, K., & Sánchez, J. E. (2017). Degradation of the herbicide paraquat by macromycetes isolated from southeastern Mexico. 3 Biotech, 7(5), 324.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Cameron, M. D., Timofeevski, S., & Aust, S. D. (2000). Enzymology of Phanerochaetechrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Applied Microbiology and Biotechnology, 54(6), 751–758.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Castellet, R. F. (2018). Fungal biodegradation of pharmaceutical active compounds in wastewater. Google Scholar
  38. Chan, W. K., Wildeboer, D., Garelick, H., & Purchase, D. (2016). Mycoremediation of heavy metal/metalloid-contaminated soil: Current understanding and future prospects. In Fungal applications in sustainable environmental biotechnology (pp. 249–272). Cham: Springer.CrossRefGoogle Scholar
  39. Chandra, P., & Singh, D. P. (2014). Removal of Cr (VI) by a halotolerant bacterium Halomonas sp. CSB 5 isolated from sāmbhar salt Lake Rajasthan (India). Cellular and Molecular Biology, 60(5), 64–72.PubMedPubMedCentralGoogle Scholar
  40. Chary, N. S., Kamala, C. T., & Raj, D. S. S. (2008). Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicology and Environmental Safety, 69(3), 513–524.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Chatterjee, A., & Abraham, J. (2017). Efficient management of e-wastes. International journal of Environmental Science and Technology, 14(1), 211–222.CrossRefGoogle Scholar
  42. Chiu, S. W., ChingML, F. K. L., & Moore, D. (1998). Spent oyster mushroom substrate performs better than many mushroom mycelia in removing the biocide pentachlorophenol. Mycological Research, 102(12), 1553–1562.CrossRefGoogle Scholar
  43. Chritian, V. (2001). Enzymes of lignin-degrading fungi: Degradation of xenobiotic compounds (Doctoral dissertation). Saurashtra University.Google Scholar
  44. Clemens, S. (2001). Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 212(4), 475–486.PubMedCrossRefGoogle Scholar
  45. Clemens, S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88(11), 1707–1719.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Cobbett, C., & Goldsbrough, P. (2002). Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology, 53(1), 159–182.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Coleman, D. C. (2008). From peds to paradoxes: Linkages between soil biota and their influences on ecological processes. Soil Biology and Biochemistry, 40(2), 271–289.CrossRefGoogle Scholar
  48. Colpaert, J. V., Wevers, J. H., Krznaric, E., & Adriaensen, K. (2011). How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Annals of Forest Science, 68(1), 17–24.CrossRefGoogle Scholar
  49. Couto, S. R., & Herrera, J. L. T. (2006). Industrial and biotechnological applications of laccases: A review. Biotechnology Advances, 24(5), 500–513.CrossRefGoogle Scholar
  50. Covino, S. (2010). In vivo and in vitro degradation of aromatic contaminants by white rot fungi. A case study: Panus tigrinus CBS, 577, 79.Google Scholar
  51. Cowan, A. K., Lodewijks, H. M., Sekhohola, L. M., & Edeki, O. G. (2016). In situ bioremediation of South African coal discard dumps. In Proceedings, mine closure-2016 (pp. 501–509). Perth: Australian Centre for Geomechanics.Google Scholar
  52. Crane, R. A., & Scott, T. B. (2012). Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. Journal of Hazardous Materials, 211, 112–125.PubMedCrossRefGoogle Scholar
  53. Crestini, C., Crucianelli, M., Orlandi, M., & Saladino, R. (2010). Oxidative strategies in lignin chemistry: A new environmental friendly approach for the functionalization of lignin and lignocellulosic fibers. Catalysis Today, 156(1–2), 8–22.CrossRefGoogle Scholar
  54. Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 97(9), 1061–1085.PubMedCrossRefGoogle Scholar
  55. Cunningham, S. D., Anderson, T. A., Schwab, A. P., & Hsu, F. C. (1996). Phytoremediation of soils contaminated with organic pollutants. Advances in Agronomy, 56(1), 55–114.CrossRefGoogle Scholar
  56. Das, N. (2005). Heavy metals biosorption by mushrooms. Nilanjana Das Natural Product Radiance, 4(6), 454–459.Google Scholar
  57. Das, M., Royer, T. V., & Leff, L. G. (2007). Diversity of fungi, bacteria, and actinomycetes on leaves decomposing in a stream. Applied and Environmental Microbiology, 73(3), 756–767.PubMedCrossRefGoogle Scholar
  58. Dashtban, M., Schraft, H., Syed, T. A., & Qin, W. (2010). Fungal biodegradation and enzymatic modification of lignin. International Journal of Biochemistry and Molecular Biology, 1(1), 36.PubMedPubMedCentralGoogle Scholar
  59. de Novais, C. B., Borges, W. L., da Conceicão, J. E., Júnior, O. J. S., & Siqueira, J. O. (2014). Inter-and intraspecific functional variability of tropical arbuscular mycorrhizal fungi isolates colonizing corn plants. Applied Soil Ecology, 76, 78–86.CrossRefGoogle Scholar
  60. Dembitsky, V. M., & Rezanka, T. (2003). Natural occurrence of arseno compounds in plants, lichens, fungi, algal species, and microorganisms. Plant Science, 165(6), 1177–1192.CrossRefGoogle Scholar
  61. Deng, Z., Cao, L., Huang, H., Jiang, X., Wang, W., Shi, Y., & Zhang, R. (2011). Characterization of Cd-and Pb-resistant fungal endophyte Mucor sp. CBRF59 isolated from rapes (Brassica chinensis) in a metal-contaminated soil. Journal of Hazardous Materials, 185(2–3), 717–724.PubMedCrossRefGoogle Scholar
  62. Deng, Z., Zhang, R., Shi, Y., Tan, H., & Cao, L. (2014). Characterization of Cd-, Pb-, Zn-resistant endophytic Lasiodiplodia sp. MXSF31 from metal accumulating Portulaca oleracea and its potential in promoting the growth of rape in metal-contaminated soils. Environmental Science and Pollution Research, 21(3), 2346–2357.PubMedCrossRefGoogle Scholar
  63. Dermatas, D., & Meng, X. (2003). Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils. Engineering Geology, 70(3–4), 377–394.CrossRefGoogle Scholar
  64. Doughari, J. (2015). An overview of plant immunity. Journal of Plant Pathology and Microbiology, 6(11), 10–4172.Google Scholar
  65. Duan, L., Naidu, R., Thavamani, P., Meaklim, J., & Megharaj, M. (2015). Managing long-term polycyclic aromatic hydrocarbon contaminated soils: A risk-based approach. Environmental Science and Pollution Research, 22(12), 8927–8941.PubMedCrossRefGoogle Scholar
  66. Duke, S. O., Lydon, J., Koskinen, W. C., Moorman, T. B., Chaney, R. L., & Hammerschmidt, R. (2012). Journal of Agricultural and Food Chemistry, 60. ISSN: 1520-5118 ISO Abbreviation: J. Agric. Food Chem.Google Scholar
  67. Dunwell, J. M., Khuri, S., & Gane, P. J. (2000). Microbial relatives of the seed storage proteins of higher plants: Conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiology and Molecular Biology Reviews, 64(1), 153–179.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S., & Visscher, P. T. (2009). Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96(3), 141–162.CrossRefGoogle Scholar
  69. Eibes, G., Cajthaml, T., Moreira, M. T., Feijoo, G., & Lema, J. M. (2006). Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone. Chemosphere, 64(3), 408–414.PubMedCrossRefGoogle Scholar
  70. Ellouze, M., & Sayadi, S. (2016). White-rot fungi and their enzymes as a biotechnological tool for xenobiotic bioremediation. In Management of hazardous wastes. Rijeka: InTech.Google Scholar
  71. Emamverdian, A., Ding, Y., Mokhberdoran, F., & Xie, Y. (2015). Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal, 2015, 4.CrossRefGoogle Scholar
  72. Encarnacion, A. B., Fagutao, F., Jintasataporn, O., Worawattanamateekul, W., Hirono, I., & Ohshima, T. (2012). Applications of ergothioneine-rich extract from an edible mushroom Flammulina velutipes for melanosis prevention in shrimp, Penaeus monodon and Litopenaeus vannamei. Food Research International, 45(1), 232–237.CrossRefGoogle Scholar
  73. Ennis, C. J., Evans, A. G., Islam, M., Ralebitso-Senior, T. K., & Senior, E. (2012). Biochar: Carbon sequestration, land remediation, and impacts on soil microbiology. Critical Reviews in Environmental Science and Technology, 42(22), 2311–2364.CrossRefGoogle Scholar
  74. Ercal, N., Gurer-Orhan, H., & Aykin-Burns, N. (2001). Toxic metals and oxidative stress part I: Mechanisms involved in metal-induced oxidative damage. Current Topics in Medicinal Chemistry, 1(6), 529–539.PubMedCrossRefGoogle Scholar
  75. Evanko, C. R., & Dzombak, D. A. (1997). Remediation of metals-contaminated soils and groundwater. Pittsburg: Ground-Water Remediation Technologies Analysis Center.Google Scholar
  76. Ferreira-Guedes, S., Mendes, B., & Leitão, A. L. (2012). Degradation of 2, 4-dichlorophenoxyacetic acid by a halotolerant strain of Penicillium chrysogenum: Antibiotic production. Environmental Technology, 33(6), 677–686.PubMedCrossRefGoogle Scholar
  77. Fidalgo, F., Azenha, M., Silva, A. F., de Sousa, A., Santiago, A., Ferraz, P., & Teixeira, J. (2013). Copper-induced stress in Solanum nigrum L. and antioxidant defense system responses. Food and Energy Security, 2(1), 70–80.CrossRefGoogle Scholar
  78. Finlay, R. D. (2008). Ecological aspects of mycorrhizal symbiosis: With special emphasis on the functional diversity of interactions involving the extraradical mycelium. Journal of Experimental Botany, 59(5), 1115–1126.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Flurkey, A., Cooksey, J., Reddy, A., Spoonmore, K., Rescigno, A., Inlow, J., & Flurkey, W. H. (2008). Enzyme, protein, carbohydrate, and phenolic contaminants in commercial tyrosinase preparations: Potential problems affecting tyrosinase activity and inhibition studies. Journal of Agricultural and Food Chemistry, 56(12), 4760–4768.PubMedCrossRefGoogle Scholar
  80. Forgacs, E., Cserhati, T., & Oros, G. (2004). Removal of synthetic dyes from wastewaters: A review. Environment International, 30(7), 953–971.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Fritsche, W., Scheibner, K., Herre, A., & Hofrichter, M. (2000). Fungal degradation of explosives: TNT and related nitroaromatic compounds. In Biodegradation of nitroaromatic compounds and explosives (pp. 213–237). Boca Raton: CRC Press.Google Scholar
  82. Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407–418.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Fulekar, M. H. (2017). Microbial degradation of petrochemical waste-polycyclic aromatic hydrocarbons. Bioresources and Bioprocessing, 4(1), 28.Google Scholar
  84. Gadd, G. M. (2004). Microbial influence on metal mobility and application for bioremediation. Geoderma, 122(2–4), 109–119.CrossRefGoogle Scholar
  85. Gadd, G. M. (2007). Geomycology: Biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research, 111(1), 3–49.CrossRefGoogle Scholar
  86. Ganeshamurthy, A. N., Varalakshmi, L. R., & Sumangala, H. P. (2016). Environmental risks associated with heavy metal contamination in soil, water and plants in urban and periurban agriculture. Journal of Horticultural Science, 3(1), 1–29.Google Scholar
  87. Gavrilescu, M. (2004). Removal of heavy metals from the environment by biosorption. Engineering in Life Sciences, 4(3), 219–232.CrossRefGoogle Scholar
  88. Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Gonen Tasdemir, F., Yamac, M., Cabuk, A., & Yildiz, Z. (2008). Selection of newly isolated mushroom strains for tolerance and biosorption of zinc in vitro. Journal of Microbiology and Biotechnology, 18(3), 483–489.PubMedPubMedCentralGoogle Scholar
  90. Gossel, T. A. (2018). Principles of clinical toxicology. Boca Raton: CRC Press.Google Scholar
  91. Gratão, P. L., Polle, A., Lea, P. J., & Azevedo, R. A. (2005). Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology, 32(6), 481–494.CrossRefGoogle Scholar
  92. Guo, G., Zhou, Q., & Ma, L. Q. (2006). Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: A review. Environmental Monitoring and Assessment, 116(1–3), 513–528.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Ha, S. B., Smith, A. P., Howden, R., Dietrich, W. M., Bugg, S., O'Connell, M. J., & Cobbett, C. S. (1999). Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomycespombe. The Plant Cell, 11(6), 1153–1163.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53(366), 1–11.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Hamba, Y., & Tamiru, M. (2016). Mycoremediation of heavy metals and hydrocarbons contaminated environment. Asian Journal of Natural and Applied Sciences, 5, 2.Google Scholar
  96. Harms, H., Schlosser, D., & Wick, L. Y. (2011). Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews Microbiology, 9(3), 177.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14(5), 9643–9684.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Hofrichter, M. (2002). Lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial Technology, 30(4), 454–466.CrossRefGoogle Scholar
  99. Hong, C. Y., Ryu, S. H., Jeong, H., Lee, S. S., Kim, M., & Choi, I. G. (2017). Phanerochaete chrysosporium multienzyme catabolic system for in vivo modification of synthetic lignin to succinic acid. ACS Chemical Biology, 12(7), 1749–1759.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Hossain, M. A., Piyatida, P., da Silva, J. A. T., & Fujita, M. (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany, 37, 872875.Google Scholar
  101. Imfeld, G., & Vuilleumier, S. (2012). Measuring the effects of pesticides on bacterial communities in soil: A critical review. European Journal of Soil Biology, 49, 22–30.CrossRefGoogle Scholar
  102. Ingram, D. S., Vince-Prue, D., & Gregory, P. J. (2015). Science and the garden: The scientific basis of horticultural practice. New York: Wiley.Google Scholar
  103. Isikhuemhen, O. S., Anoliefo, G. O., & Oghale, O. I. (2003). Bioremediation of crude oil polluted soil by the white rot fungus, Pleurotus tuberregium (Fr.) Sing. Environmental Science and Pollution Research, 10(2), 108–112.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Javaid, A., Bajwa, R., Shafique, U., & Anwar, J. (2011). Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass and Bioenergy, 35(5), 1675–1682.CrossRefGoogle Scholar
  105. Jeffries, P., Gianinazzi, S., Perotto, S., Turnau, K., & Barea, J. M. (2003). The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology and Fertility of Soils, 37(1), 1–16.Google Scholar
  106. Johansson, J. F., Paul, L. R., & Finlay, R. D. (2004). Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiology Ecology, 48(1), 1–13.PubMedPubMedCentralCrossRefGoogle Scholar
  107. John, J. (2013). Assessment of arbuscular mycorrhizal fungi in a green roof system. Google Scholar
  108. Johnsen, A. R., Wick, L. Y., & Harms, H. (2005). Principles of microbial PAH-degradation in soil. Environmental Pollution, 133(1), 71–84.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Johnson, S. B., Yoon, T. H., Slowey, A. J., & Brown, G. E. (2004). Adsorption of organic matter at mineral/water interfaces: 3. Implications of surface dissolution for adsorption of oxalate. Langmuir, 20(26), 11480–11492.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Jomova, K., & Valko, M. (2011). Advances in metal-induced oxidative stress and human disease. Toxicology, 283(2–3), 65–87.PubMedCrossRefPubMedCentralGoogle Scholar
  111. Joy, J. I. T. H. I. N., Jose, C. I. N. T. I. L., Mathew, P., Thomas, S. A. B. U., & Khalaf, M. N. (2015). Biological delignification of biomass. Green Polymers and Environment Pollution Control, 2015, 271.CrossRefGoogle Scholar
  112. Jozefczak, M., Remans, T., Vangronsveld, J., & Cuypers, A. (2012). Glutathione is a key player in metal-induced oxidative stress defenses. International Journal of Molecular Sciences, 13(3), 3145–3175.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Juhasz, A. L., & Naidu, R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: A review of the microbial degradation of benzo [α] pyrene. International Biodeterioration and Biodegradation, 45(1–2), 57–88.CrossRefGoogle Scholar
  114. Juwarkar, A. A., Singh, S. K., & Mudhoo, A. (2010). A comprehensive overview of elements in bioremediation. Reviews in Environmental Science and Bio/technology, 9(3), 215–288.CrossRefGoogle Scholar
  115. Kadri, T., Rouissi, T., Brar, S. K., Cledon, M., Sarma, S., & Verma, M. (2017). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. Journal of Environmental Sciences, 51, 52–74.CrossRefGoogle Scholar
  116. Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science and Technology, 44(4), 1247–1253.PubMedCrossRefGoogle Scholar
  117. Kerem, Z., Friesem, D., & Hadar, Y. (1992). Lignocellulose degradation during solid-state fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium. Applied and Environmental Microbiology, 58(4), 1121–1127.PubMedPubMedCentralGoogle Scholar
  118. Khullar, S., & Reddy, M. S. (2018). Ectomycorrhizal fungi and its role in metal homeostasis through metallothionein and glutathione mechanisms. Current Biotechnology, 7(3), 231–241.CrossRefGoogle Scholar
  119. Kim, K. H., Jahan, S. A., Kabir, E., & Brown, R. J. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment International, 60, 71–80.PubMedCrossRefGoogle Scholar
  120. Kirk, T. K., & Farrell, R. L. (1987). Enzymatic “combustion”: The microbial degradation of lignin. Annual Reviews in Microbiology, 41(1), 465–501.CrossRefGoogle Scholar
  121. Konhauser, K. O. (1998). Diversity of bacterial iron mineralization. Earth-Science Reviews, 43(3–4), 91–121.CrossRefGoogle Scholar
  122. Kubartová, A., Ranger, J., Berthelin, J., & Beguiristain, T. (2009). Diversity and decomposing ability of saprophytic fungi from temperate forest litter. Microbial Ecology, 58(1), 98–107.PubMedCrossRefGoogle Scholar
  123. Kumar, K. S., Dahms, H. U., Won, E. J., Lee, J. S., & Shin, K. H. (2015). Microalgae - a promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety, 113, 329–352.CrossRefGoogle Scholar
  124. Kushwaha, M., Verma, S., & Chatterjee, S. (2016). Profenofos, an acetylcholinesterase-inhibiting organophosphorus pesticide: A short review of its usage, toxicity, and biodegradation. Journal of Environmental Quality, 45(5), 1478–1489.PubMedCrossRefGoogle Scholar
  125. Kvesitadze, G., Khatisashvili, G., Sadunishvili, T., & Ramsden, J. J. (2006). Biochemical mechanisms of detoxification in higher plants: Basis of phytoremediation. Berlin/Heidelberg: Springer.Google Scholar
  126. Lambers, H., Raven, J. A., Shaver, G. R., & Smith, S. E. (2008). Plant nutrient-acquisition strategies change with soil age. Trends in Ecology and Evolution, 23(2), 95–103.PubMedCrossRefGoogle Scholar
  127. Lamichhane, S., Krishna, K. B., & Sarukkalige, R. (2016). Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review. Chemosphere, 148, 336–353.PubMedCrossRefGoogle Scholar
  128. Lavelle, P., & Spain, A. V. (2001). Soil ecology. Dordrecht: Springer Science and Business Media.CrossRefGoogle Scholar
  129. Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota–a review. Soil Biology and Biochemistry, 43(9), 1812–1836.CrossRefGoogle Scholar
  130. Leitão, A. L. (2009). Potential of Penicillium species in the bioremediation field. International Journal of Environmental Research and Public Health, 6(4), 1393–1417.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Lemery, J., & Auerbach, P. (2017). Enviromedics: The impact of climate change on human health. Lanham: Rowman & Littlefield.Google Scholar
  132. Lenoir, I., Fontaine, J., & Sahraoui, A. L. H. (2016). Arbuscular mycorrhizal fungal responses to abiotic stresses: A review. Phytochemistry, 123, 4–15.PubMedCrossRefPubMedCentralGoogle Scholar
  133. Leonowicz, A., Cho, N., Luterek, J., Wilkolazka, A., Wojtas-Wasilewska, M., Matuszewska, A., & Rogalski, J. (2001). Fungal laccase: Properties and activity on lignin. Journal of Basic Microbiology, 41(3–4), 185–227.PubMedCrossRefGoogle Scholar
  134. Li, X., & Jia, R. (2008). Decolorization and biosorption for Congo red by system rice hull-Schizophyllum sp. F17 under solid-state condition in a continuous flow packed-bed bioreactor. Bioresource Technology, 99(15), 6885–6892.PubMedCrossRefGoogle Scholar
  135. Lynd, L. R., Weimer, P. J., Van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66(3), 506–577.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Lynes, M. A., Pietrosimone, K., Marusov, G., Donaldson, D. V., Melchiorre, C., Yin, X., Lawrence, D. A., & McCabe, M. J. (2010). Metal influences on immune function. In Cellular and molecular biology of metals (p. 379). New York: CRC Press.CrossRefGoogle Scholar
  137. Magan, N. (2007). Fungi in extreme environments. The Mycota, 4, 85–103.CrossRefGoogle Scholar
  138. Mahmood, K., Jadoon, S., Mahmood, Q., Irshad, M., & Hussain, J. (2014). Synergistic effects of toxic elements on heat shock proteins. BioMed Research International, 2014, 1–17.Google Scholar
  139. Marques, A. P., Rangel, A. O., & Castro, P. M. (2009). Remediation of heavy metal contaminated soils: Phytoremediation as a potentially promising clean-up technology. Critical Reviews in Environmental Science and Technology, 39(8), 622–654.CrossRefGoogle Scholar
  140. Marschner, P. (2012). Rhizosphere biology. In Marschner’s mineral nutrition of higher plants (3rd ed., pp. 369–388). London: Academic.CrossRefGoogle Scholar
  141. Martínez, Á. T., Speranza, M., Ruiz-Dueñas, F. J., Ferreira, P., Camarero, S., Guillén, F., & Río Andrade, J. C. D. (2005). Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology, 8(3), 195–204.PubMedGoogle Scholar
  142. Martínez, Á. T., Rencoret, J., Marques, G., Gutiérrez, A., Ibarra, D., Jiménez-Barbero, J., & José, C. (2008). Monolignol acylation and lignin structure in some non woody plants: A 2D NMR study. Phytochemistry, 69(16), 2831–2843.PubMedCrossRefGoogle Scholar
  143. Matés, J. M., Pérez-Gómez, C., & De Castro, I. N. (1999). Antioxidant enzymes and human diseases. Clinical Biochemistry, 32(8), 595–603.PubMedCrossRefGoogle Scholar
  144. Megharaj, M., Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N., & Naidu, R. (2011). Bioremediation approaches for organic pollutants: A critical perspective. Environment International, 37(8), 1362–1375.PubMedCrossRefGoogle Scholar
  145. Meharg, A. A., & Cairney, J. W. (2000). Ectomycorrhizas-extending the capabilities of rhizosphere remediation. Soil Biology and Biochemistry, 32(11–12), 1475–1484.CrossRefGoogle Scholar
  146. Messens, J., & Silver, S. (2006). Arsenate reduction: Thiol cascade chemistry with convergent evolution. Journal of Molecular Biology, 362(1), 1–17.PubMedCrossRefGoogle Scholar
  147. Mkandawire, M., & Dudel, E. G. (2007). Are Lemna spp. effective phytoremediation agents. Bioremediation, Biodiversity and Bioavailability, 1(1), 56–71.Google Scholar
  148. Mohan, D., & Pittman, C. U. (2007). Arsenic removal from water/wastewater using adsorbents – A critical review. Journal of Hazardous Materials, 142(1–2), 1–53.PubMedCrossRefGoogle Scholar
  149. Mohan, S. V., Kisa, T., Ohkuma, T., Kanaly, R. A., & Shimizu, Y. (2006). Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency. Reviews in Environmental Science and Bio/Technology, 5(4), 347–374.CrossRefGoogle Scholar
  150. Moktali, V., Park, J., Fedorova-Abrams, N. D., Park, B., Choi, J., Lee, Y. H., & Kang, S. (2012). Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes. BMC Genomics, 13(1), 525.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Morelli, I. S., Saparrat, M. C. N., Del Panno, M. T., Coppotelli, B. M., & Arrambari, A. (2013). Bioremediation of PAH-contaminated soil by fungi. In Fungi as bioremediators (pp. 159–179). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  152. Morozova, O. V., Shumakovich, G. P., Shleev, S. V., & Yaropolov, Y. I. (2007). Laccase-mediator systems and their applications: A review. Applied Biochemistry and Microbiology, 43(5), 523–535.CrossRefGoogle Scholar
  153. Mudhoo, A., Garg, V. K., & Wang, S. (2012). Removal of heavy metals by biosorption. Environmental Chemistry Letters, 10(2), 109–117.CrossRefGoogle Scholar
  154. Mueller, K. E. (2005). Investigations into the use of trees for phytoremediation of pah contaminated soils (Doctoral dissertation). University of Cincinnati.Google Scholar
  155. Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Engineering Geology, 60(1–4), 193–207.CrossRefGoogle Scholar
  156. Murphy, A., Zhou, J., Goldsbrough, P. B., & Taiz, L. (1997). Purification and immunological identification of Metallothioneins 1 and 2 from Arabidopsis thaliana. Plant Physiology, 113(4), 1293–1301.PubMedPubMedCentralCrossRefGoogle Scholar
  157. Nagy, B., Măicăneanu, A., Indolean, C., Mânzatu, C., Silaghi-Dumitrescu, L., & Majdik, C. (2014). Comparative study of Cd (II) biosorption on cultivated Agaricus bisporus and wild Lactarius piperatus based biocomposites. Linear and nonlinear equilibrium modelling and kinetics. Journal of the Taiwan Institute of Chemical Engineers, 45(3), 921–929.CrossRefGoogle Scholar
  158. Nasr, M., & Arp, P. A. (2011). Hg concentrations and accumulations in fungal fruiting bodies, as influenced by forest soil substrates and moss carpets. Applied Geochemistry, 26(11), 1905–1917.CrossRefGoogle Scholar
  159. Nnorom, I. C., Jarzyńska, G., Drewnowska, M., Dryżałowska, A., Kojta, A., Pankavec, S., & Falandysz, J. (2013). Major and trace elements in sclerotium of Pleurotus tuber-regium (Ósū) mushroom – Dietary intake and risk in southeastern Nigeria. Journal of Food Composition and Analysis, 29(1), 73–81.CrossRefGoogle Scholar
  160. Noctor, G., Mhamdi, A., Chaouch, S., Han, Y. I., Neukermans, J., Marquez-Garcia, B. E. L. E. N., & Foyer, C. H. (2012). Glutathione in plants: An integrated overview. Plant, Cell and Environment, 35(2), 454–484.PubMedCrossRefPubMedCentralGoogle Scholar
  161. Nordberg, J., & Arner, E. S. (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system1. Free Radical Biology and Medicine, 31(11), 1287–1312.PubMedCrossRefPubMedCentralGoogle Scholar
  162. Nunes, C. S., & Malmlöf, K. (2018). Enzymatic decontamination of antimicrobials, phenols, heavy metals, pesticides, polycyclic aromatic hydrocarbons, dyes, and animal waste. In Enzymes in human and animal nutrition (pp. 331–359). New York: Academic.CrossRefGoogle Scholar
  163. Nykiel-Szymańska, J., Stolarek, P., & Bernat, P. (2018). Elimination and detoxification of 2, 4-D by Umbelopsis isabellina with the involvement of cytochrome P450. Environmental Science and Pollution Research, 25(3), 2738–2743.PubMedCrossRefGoogle Scholar
  164. Oyetayo, V. O., Adebayo, A. O., & Ibileye, A. (2012). Assessment of the biosorption potential of heavy metals by Pleurotus tuberregium. International Journal of Advanced Biological Research, 2, 293–297.Google Scholar
  165. Özdemir, S., Kilinc, E., Poli, A., Nicolaus, B., & Güven, K. (2009). Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub. sp. decanicus and Geobacillus thermoleovorans sub. sp. stromboliensis: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 152(1), 195–206.CrossRefGoogle Scholar
  166. Pala, S. A., Wani, A. H., Boda, R. H., & Wani, B. A. (2014). Mushroom refinement endeavor auspicate non-green revolution in the offing. Nusantara Bioscience, 6(2), 173–185.Google Scholar
  167. Parmar, P., Dave, B., Sudhir, A., Panchal, K., & Subramanian, R. B. (2013). Physiological, biochemical and molecular response of plants against heavy metals stress. International Journal of Current Research, 5(1), 80–89.Google Scholar
  168. Pearce, C. I., Lloyd, J. R., & Guthrie, J. T. (2003). The removal of colour from textile wastewater using whole bacterial cells: A review. Dyes and Pigments, 58(3), 179–196.CrossRefGoogle Scholar
  169. Pérez, J., Munoz-Dorado, J., de la Rubia, T. D. L. R., & Martinez, J. (2002). Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. International Microbiology, 5(2), 53–63.PubMedCrossRefPubMedCentralGoogle Scholar
  170. Pierart, A., Shahid, M., Séjalon-Delmas, N., & Dumat, C. (2015). Antimony bioavailability: Knowledge and research perspectives for sustainable agricultures. Journal of Hazardous Materials, 289, 219–234.PubMedCrossRefPubMedCentralGoogle Scholar
  171. Pointing, S. (2001). Feasibility of bioremediation by white-rot fungi. Applied Microbiology and Biotechnology, 57(1–2), 20–33.PubMedPubMedCentralGoogle Scholar
  172. Polak, J., & Jarosz-Wilkolazka, A. (2012). Fungal laccases as green catalysts for dye synthesis. Process Biochemistry, 47(9), 1295–1307.CrossRefGoogle Scholar
  173. Priyadharsini, P., Rojamala, K., Ravi, R. K., Muthuraja, R., Nagaraj, K., & Muthukumar, T. (2016). Mycorrhizosphere: The extended rhizosphere and its significance. In Plant-microbe interaction: An approach to sustainable agriculture (pp. 97–124). Singapore: Springer.CrossRefGoogle Scholar
  174. Puglisi, E., Hamon, R., Vasileiadis, S., Coppolecchia, D., & Trevisan, M. (2012). Adaptation of soil microorganisms to trace element contamination: A review of mechanisms, methodologies, and consequences for risk assessment and remediation. Critical Reviews in Environmental Science and Technology, 42(22), 2435–2470.CrossRefGoogle Scholar
  175. Purahong, W., Wubet, T., Lentendu, G., Schloter, M., Pecyna, M. J., Kapturska, D., & Buscot, F. (2016). Life in leaf litter: Novel insights into community dynamics of bacteria and fungi during litter decomposition. Molecular Ecology, 25(16), 4059–4074.PubMedCrossRefPubMedCentralGoogle Scholar
  176. Purnomo, A. S., Ashari, K., & Hermansyah, F. T. (2017). Evaluation of the synergistic effect of mixed cultures of white-rot fungus Pleurotus ostreatus and biosurfactant-producing bacteria on DDT biodegradation. Journal of Microbiology and Biotechnology, 27(7), 1306–1315.PubMedCrossRefPubMedCentralGoogle Scholar
  177. Purohit, J., Anirudha, C., Mohan, K. B., & Singh, N. K. (2018). Mycoremediation of agricultural soil: Bioprospection for sustainable development. In Mycoremediation and environmental sustainability (pp. 91–120). Cham: Springer.CrossRefGoogle Scholar
  178. Qu, J., Zang, T., Gu, H., Li, K., Hu, Y., Ren, G., & Jin, Y. (2015). Biosorption of copper ions from aqueous solution by Flammulina velutipes spent substrate. Bio Resources, 10(4), 8058–8075.Google Scholar
  179. Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: Novel biotechnology for energy generation. Trends in Biotechnology, 23(6), 291–298.PubMedCrossRefPubMedCentralGoogle Scholar
  180. Raghukumar, S. (2017). Physiology, biochemistry, and biotechnology. In Fungi in coastal and oceanic marine ecosystems (pp. 265–306). Cham: Springer.CrossRefGoogle Scholar
  181. Rajinipriya, M., Nagalakshmaiah, M., Robert, M., & Elkoun, S. (2018). Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: A review. ACS Sustainable Chemistry and Engineering, 6(3), 2807–2828.CrossRefGoogle Scholar
  182. Rashid, A., Bhatti, H. N., Iqbal, M., & Noreen, S. (2016). Fungal biomass composite with bentonite efficiency for nickel and zinc adsorption: A mechanistic study. Ecological Engineering, 91, 459–471.CrossRefGoogle Scholar
  183. Rauser, W. E. (1995). Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiology, 109(4), 1141.PubMedPubMedCentralCrossRefGoogle Scholar
  184. Read, D. J., & Perez-Moreno, J. (2003). Mycorrhizas and nutrient cycling in ecosystems–A journey towards relevance. New Phytologist, 157(3), 475–492.CrossRefGoogle Scholar
  185. Richter, H., & Howard, J. B. (2000). Formation of polycyclic aromatic hydrocarbons and their growth to soot a review of chemical reaction pathways. Progress in Energy and Combustion Science, 26(4–6), 565–608.CrossRefGoogle Scholar
  186. Rillig, M. C., & Mummey, D. L. (2006). Mycorrhizas and soil structure. New Phytologist, 171(1), 41–53.PubMedCrossRefPubMedCentralGoogle Scholar
  187. Roshchina, V. V., & Roshchina, V. D. (2012). The excretory function of higher plants. Berlin/Heidelberg: Springer.Google Scholar
  188. Rouches, E., Herpoël-Gimbert, I., Steyer, J. P., & Carrere, H. (2016). Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: A review. Renewable and Sustainable Energy Reviews, 59, 179–198.CrossRefGoogle Scholar
  189. Rout, M. E. (2014). The plant microbiome. In Advances in botanical research (Vol. 69, pp. 279–309). Waltham: Academic.Google Scholar
  190. Saeedi, M., Li, L. Y., & Salmanzadeh, M. (2012). Heavy metals and polycyclic aromatic hydrocarbons: Pollution and ecological risk assessment in street dust of Tehran. Journal of Hazardous Materials, 227, 9–17.PubMedCrossRefPubMedCentralGoogle Scholar
  191. Saichek, R. E., & Reddy, K. R. (2005). Electrokinetically enhanced remediation of hydrophobic organic compounds in soils: A review. Critical Reviews in Environmental Science and Technology, 35(2), 115–192.CrossRefGoogle Scholar
  192. Saranraj, P., & Stella, D. (2014). Impact of sugar mill effluent to environment and bioremediation: A review. World Applied Sciences Journal, 30(3), 299–316.Google Scholar
  193. Sardrood, B. P., Goltapeh, E. M., & Varma, A. (2013). An introduction to bioremediation. In Fungi as bioremediators (pp. 3–27). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  194. Sarma, V. V. (2018). Obligate marine fungi and bioremediation. In Mycoremediation and environmental sustainability (pp. 307–323). Cham: Springer.CrossRefGoogle Scholar
  195. Schiffer, M. B. (1986). Radiocarbon dating and the “old wood” problem: The case of the Hohokam chronology. Journal of Archaeological Science, 13(1), 13–30.CrossRefGoogle Scholar
  196. Schmidt, T., & Schaechter, M. (2012). Topics in ecological and environmental microbiology. Burlington: Elsevier.Google Scholar
  197. Schutzendubel, A., & Polle, A. (2002). Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, 53(372), 1351–1365.PubMedPubMedCentralGoogle Scholar
  198. Sharma, S. S., & Dietz, K. J. (2006). The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany, 57(4), 711–726.PubMedCrossRefGoogle Scholar
  199. Sharma, S., Tiwari, S., Hasan, A., Saxena, V., & Pandey, L. M. (2018). Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. 3 Biotech, 8(4), 216.PubMedPubMedCentralCrossRefGoogle Scholar
  200. Siddiquee, S., Rovina, K., Azad, S. A., Naher, L., Suryani, S., & Chaikaew, P. (2015). Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: A review. Journal of Microbial and Biochemical Technology, 7(6), 384–393.CrossRefGoogle Scholar
  201. Singh, O. V., Labana, S., Pandey, G., Budhiraja, R., & Jain, R. K. (2003). Phytoremediation: An overview of metallic ion decontamination from soil. Applied Microbiology and Biotechnology, 61(5–6), 405–412.PubMedCrossRefGoogle Scholar
  202. Singh, P. C., Srivastava, S., Shukla, D., Bist, V., Tripathi, P., Anand, V., & Srivastava, S. (2018). Mycoremediation mechanisms for heavy metal resistance/tolerance in plants. In Mycoremediation and environmental sustainability (pp. 351–381). Cham: Springer.CrossRefGoogle Scholar
  203. Sivaramakrishnan, S., Gangadharan, D., Nampoothiri, K. M., Soccol, C. R., & Pandey, A. (2006). α-Amylases from microbial sources–an overview on recent developments. Food Technology and Biotechnology, 44(2), 173–184.Google Scholar
  204. Smith, S. E., & Read, D. J. (2010). Mycorrhizal symbiosis. New York: Academic.Google Scholar
  205. Soden, D. M., & Dobson, A. D. (2001). Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiology, 147(7), 1755–1763.PubMedCrossRefGoogle Scholar
  206. Spokas, K. A., Cantrell, K. B., Novak, J. M., Archer, D. W., Ippolito, J. A., Collins, H. P., & Lentz, R. D. (2012). Biochar: A synthesis of its agronomic impact beyond carbon sequestration. Journal of Environmental Quality, 41(4), 973–989.PubMedCrossRefGoogle Scholar
  207. Stamets, P. (2011). Growing gourmet and medicinal mushrooms. Berkeley: Ten Speed Press.Google Scholar
  208. Stanic, A. (2017). Preparation of Thiol Conjugates of the Mycotoxin Deoxynivalenol and their Occurrence in Nature.
  209. Strong, P. J., & Burgess, J. E. (2008). Treatment methods for wine-related and distillery wastewaters: A review. Bioremediation Journal, 12(2), 70–87.CrossRefGoogle Scholar
  210. Sud, D., Mahajan, G., & Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – A review. Bioresource Technology, 99(14), 6017–6027.PubMedCrossRefPubMedCentralGoogle Scholar
  211. Sudha, M., Saranya, A., Selvakumar, G., & Sivakumar, N. (2014). Microbial degradation of azo dyes: A review. International Journal of Current Microbiology and Applied Sciences, 3(2), 670–690.Google Scholar
  212. Sugasini, A., Rajagopal, K., & Banu, N. (2014). A study on biosorption potential of Aspergillus sp. of tannery effluent. Advances in Bioscience and Biotechnology, 5(10), 853.CrossRefGoogle Scholar
  213. Sutherland, C., & Venkobachar, C. (2010). A diffusion-chemisorption kinetic model for simulating biosorption using forest macro-fungus, fomes fasciatus. International Research Journal of Plant Science, 1(4), 107–117.Google Scholar
  214. Sytar, O., Kumar, A., Latowski, D., Kuczynska, P., Strzałka, K., & Prasad, M. N. V. (2013). Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiologiae Plantarum, 35(4), 985–999.CrossRefGoogle Scholar
  215. Tabibzadeh, S. (2016). Nature creates, adapts, protects and sustains life using hydrogen sulfide. Frontiers in Bioscience, 21, 528–560.CrossRefGoogle Scholar
  216. Tadkaew, N., Hai, F. I., McDonald, J. A., Khan, S. J., & Nghiem, L. D. (2011). Removal of trace organics by MBR treatment: The role of molecular properties. Water Research, 45(8), 2439–2451.PubMedCrossRefPubMedCentralGoogle Scholar
  217. Tahir, M. W., Zaidi, N. A., Rao, A. A., Blank, R., Vellekoop, M. J., & Lang, W. (2018). A fungus spores dataset and a convolutional neural networks based approach for fungus detection. IEEE Transactions on Nano Bioscience, 17(3), 5–22.Google Scholar
  218. Tak, H. I., Ahmad, F., & Babalola, O. O. (2013). Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. In Reviews of environmental contamination and toxicology (Vol. 223, pp. 33–52). New York: Springer.Google Scholar
  219. Tan, Y. H. (2011) Behavioral properties of locally isolated Acinetobacter species in degrading hydrocarbon chain in crude oil and used cooking oil (Doctoral dissertation). UTAR.Google Scholar
  220. Tangahu, B. V., Abdullah, S., Rozaimah, S., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 2011, 1–31.CrossRefGoogle Scholar
  221. Tay, C. C., Liew, H. H., Yin, C. Y., Abdul-Talib, S., Surif, S., Suhaimi, A. A., & Yong, S. K. (2011). Biosorption of cadmium ions using Pleurotus ostreatus: Growth kinetics, isotherm study and biosorption mechanism. Korean Journal of Chemical Engineering, 28(3), 825–830.CrossRefGoogle Scholar
  222. Teng, Y., Luo, Y., Sun, M., Liu, Z., Li, Z., & Christie, P. (2010). Effect of bioaugmentation by Paracoccus sp. strain HPD-2 on the soil microbial community and removal of polycyclic aromatic hydrocarbons from an aged contaminated soil. Bioresource Technology, 101(10), 3437–3443.PubMedCrossRefPubMedCentralGoogle Scholar
  223. Tian, H., Ma, Y. J., Li, W. Y., & Wang, J. W. (2018). Efficient degradation of triclosan by an endophytic fungus Penicillium oxalicum B4. Environmental Science and Pollution Research, 25(9), 8963–8975.PubMedCrossRefPubMedCentralGoogle Scholar
  224. Toljander, J. F., Lindahl, B. D., Paul, L. R., Elfstrand, M., & Finlay, R. D. (2007). Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiology Ecology, 61(2), 295–304.PubMedCrossRefPubMedCentralGoogle Scholar
  225. Tsarevsky, N. V., & Matyjaszewski, K. (2007). Green atom transfer radical polymerization: From process design to preparation of well-defined environmentally friendly polymeric materials. Chemical Reviews, 107(6), 2270–2299.PubMedCrossRefPubMedCentralGoogle Scholar
  226. Valášková, V. (2010). Physiology and ecology of saprotrophic basidiomycetes degrading dead plant biomass. Google Scholar
  227. Vander Oost, R., Beyer, J., & Vermeulen, N. P. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environmental Toxicology and Pharmacology, 13(2), 57–149.CrossRefGoogle Scholar
  228. Vara, S. (2017). Mycoremediation of lignocelluloses. In Handbook of research on inventive bioremediation techniques (pp. 264–286). New York: IGI Global.CrossRefGoogle Scholar
  229. Vassilev, A., Schwitzguébel, J. P., Thewys, T., Van Der Lelie, D., & Vangronsveld, J. (2004). The use of plants for remediation of metal-contaminated soils. The Scientific World Journal, 4, 9–34.PubMedPubMedCentralCrossRefGoogle Scholar
  230. Verbruggen, N., Hermans, C., & Schat, H. (2009). Mechanisms to cope with arsenic or cadmium excess in plants. Current Opinion in Plant Biology, 12(3), 364–372.PubMedCrossRefGoogle Scholar
  231. Waghunde, R. R., Shelake, R. M., & Sabalpara, A. N. (2016). Trichoderma: A significant fungus for agriculture and environment. African Journal of Agricultural Research, 11(22), 1952–1965.CrossRefGoogle Scholar
  232. Walker, G. M., & White, N. A. (2017). Introduction to fungal physiology. In Fungi: Biology and applications (pp. 1–35). Hoboken: Wiley.Google Scholar
  233. Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27(2), 195–226.PubMedCrossRefGoogle Scholar
  234. Wu, Y., Luo, Y., Zou, D., Ni, J., Liu, W., Teng, Y., & Li, Z. (2008). Bioremediation of polycyclic aromatic hydrocarbons contaminated soil with Monilinia sp.: Degradation and microbial community analysis. Biodegradation, 19(2), 247–257.PubMedCrossRefGoogle Scholar
  235. Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecology, 11, 1–19.CrossRefGoogle Scholar
  236. Xiong, X. Q., Liao, H. D., Ma, J. S., Liu, X. M., Zhang, L. Y., Shi, X. W., & Zhu, Y. H. (2014). Isolation of a rice endophytic bacterium, Pantoea sp. Sd-1, with ligninolytic activity and characterization of its rice straw degradation ability. Letters in Applied Microbiology, 58(2), 123–129.PubMedCrossRefGoogle Scholar
  237. Xu, P., Zeng, G., Huang, D., Liu, L., Zhao, M., Lai, C., & Zhang, C. (2016). Metal bioaccumulation, oxidative stress and antioxidant defenses in Phanerochaete chrysosporium response to Cd exposure. Ecological Engineering, 87, 150–156.CrossRefGoogle Scholar
  238. Xue, J., Yu, Y., Bai, Y., Wang, L., & Wu, Y. (2015). Marine oil-degrading microorganisms and biodegradation process of petroleum hydrocarbon in marine environments: A review. Current Microbiology, 71(2), 220–228.PubMedCrossRefGoogle Scholar
  239. Yang, S., Hai, F. I., Nghiem, L. D., Price, W. E., Roddick, F., Moreira, M. T., & Magram, S. F. (2013). Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes: A critical review. Bioresource Technology, 141, 97–108.PubMedCrossRefGoogle Scholar
  240. Zavarzina, A. G., Lisov, A. A., Zavarzin, A. A., & Leontievsky, A. A. (2010). Fungal oxidoreductases and humification in forest soils. In Soil enzymology (pp. 207–228). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  241. Zenk, M. H. (1996). Heavy metal detoxification in higher plants-A review. Gene, 179(1), 21–30.PubMedCrossRefGoogle Scholar
  242. Zhang, Y., & Tao, S. (2009). Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmospheric Environment, 43(4), 812–819.CrossRefGoogle Scholar
  243. Zhang, X., Wang, H., He, L., Lu, K., Sarmah, A., Li, J., Bolan, N. S., Pei, J., & Huang, H. (2013). Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research, 20(12), 8472–8483.PubMedCrossRefGoogle Scholar
  244. Zhang, C., Chen, W., & Alvarez, P. J. (2014). Manganese peroxidase degrades pristine but not surface-oxidized (carboxylated) single-walled carbon nanotubes. Environmental Science and Technology, 48(14), 7918–7923.PubMedCrossRefGoogle Scholar
  245. Zhao, F. J., Zhu, Y. G., & Meharg, A. A. (2013). Methylated arsenic species in rice: Geographical variation, origin, and uptake mechanisms. Environmental Science and Technology, 47(9), 3957–3966.PubMedCrossRefGoogle Scholar
  246. Zucca, P., Rescigno, A., Rinaldi, A. C., & Sanjust, E. (2014). Biomimetic metalloporphines and metalloporphyrins as potential tools for delignification: Molecular mechanisms and application perspectives. Journal of Molecular Catalysis A: Chemical, 388, 2–34.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Prem Chandra
    • 1
  • Enespa
    • 1
  1. 1.Department of Environmental Microbiology, School for Environmental Sciences,Babasaheb Bhimrao Ambedkar (A Central) UniversityLucknowIndia

Personalised recommendations