Vulnerability of Soil Micro Biota Towards Natural and Anthropogenic Induced Changes and Loss of Pedospheric Functionality

  • Siddharth Vats
  • Neeraj Gupta
  • Prachi BhargavaEmail author


Throughout the history of planet earth, microbes have radically reshaped all the forms of life by performing photosynthesis, producing oxygen, producing and fixing CO2 and decomposing organic matter which return nutrients back to the earth. With no microbes on earth all the different life and geochemical cycles will stop. Soil is the home to innumerable microbes. The outer most layer of the earth crust is called the pedosphere which provides bed for agriculture. All the microbiota, present in pedosphere have a strong association with their respective environments and habitats. Microbes residing the pedosphere serve as the foundation and life supporting systems to all the geochemical cycles and soil science is an outcome of all the advancements in geosciences. Geo-bio-spherically study of pedosphere involves the relation of each layer of earth with each other and their relationship with biosphere.

This chapter discusses the present scenario of pedosphere in terms of its structural composition, functions and the inter relationship of the microflora and fauna with the different layers of soil.


Anthropology Bacterial diversity Pedosphere Agriculture Heavy metals 



PB thanks DST-SERB: SB/YS/LS-213/2013 for the financial support.


  1. Augé, R. M. (2004). Arbuscular mycorrhizae and soil/plant water relations. Canadian Journal of Soil Science, 84(4), 373–381.CrossRefGoogle Scholar
  2. Bhargava, P., Gupta, N., Vats, S., & Goel, R. (2017a). Health issues and heavy metals. Austin Journal of Environmental Toxicology, 3(1), 3018.Google Scholar
  3. Bhargava, P., Singh, A. K., & Goel, R. (2017b). Microbes: Bioresource in agriculture and environmental sustainability. In Plant-microbe interactions in agro-ecological perspectives (pp. 361–376). Singapore: Springer.CrossRefGoogle Scholar
  4. Brady, N. C., & Weil, R. R. (2008). The nature and properties of soils (Vol. 360). Upper Saddle River: Pearson Prentice Hall.Google Scholar
  5. Dong, X. U. E., Huai-Ying, Y. A. O., De-Yong, G. E., & Huang, C. Y. (2008). Soil microbial community structure in diverse land use systems: A comparative study using biolog, DGGE, and PLFA analyses. Pedosphere, 18(5), 653–663.Google Scholar
  6. Fowler, B. A. (Ed.). (2013). Biological and environmental effects of arsenic (Vol. 6). Amsterdam: Elsevier.Google Scholar
  7. Gadd, G. M., & Griffiths, A. J. (1977). Microorganisms and heavy metal toxicity. Microbial Ecology, 4(4), 303–317.CrossRefGoogle Scholar
  8. Goudie, A. S. (2018). Human impact on the natural environment. Hoboken: Wiley.Google Scholar
  9. Gupta, N., Vats, S., & Bhargava, P. (2018). Sustainable agriculture: Role of metagenomics and metabolomics in exploring the soil microbiota. In Silico approach for sustainable agriculture (pp. 183–199). Singapore: Springer.CrossRefGoogle Scholar
  10. Han, F. X., Banin, A., Su, Y., Monts, D. L., Plodinec, J. M., Kingery, W. L., & Triplett, G. E. (2002). Industrial age anthropogenic inputs of heavy metals into the pedosphere. Naturwissenschaften, 89(11), 497–504.CrossRefGoogle Scholar
  11. Hou, E. Q., Xiang, H. M., Li, J. L., Li, J., & Wen, D. Z. (2015). Soil acidification and heavy metals in urban parks as affected by reconstruction intensity in a humid subtropical environment. Pedosphere, 25(1), 82–92.CrossRefGoogle Scholar
  12. Karpachevskii, L. O. (2011). A book on the pedosphere of the earth. Eurasian Soil Science, 44(7), 832–833.CrossRefGoogle Scholar
  13. Kaur, A., Vats, S., Rekhi, S., Bhardwaj, A., Goel, J., Tanwar, R. S., & Gaur, K. K. (2010). Physico-chemical analysis of the industrial effluents and their impact on the soil microflora. Procedia Environmental Sciences, 2, 595–599.CrossRefGoogle Scholar
  14. Khaleel, R., Reddy, K. R., & Overcash, M. R. (1981). Changes in soil physical properties due to organic waste applications: A review 1. Journal of Environmental Quality, 10(2), 133–141.CrossRefGoogle Scholar
  15. Li, X., & Chen, Z. (2004). Soil microbial biomass C and N along a climatic transect in the Mongolian steppe. Biology and Fertility of Soils, 39(5), 344–351.Google Scholar
  16. Liu, E., Yan, C., Mei, X., He, W., Bing, S. H., Ding, L., et al. (2010). Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma, 158(3–4), 173–180.CrossRefGoogle Scholar
  17. McDaniel, M. D., Tiemann, L. K., & Grandy, A. S. (2014). Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecological Applications, 24(3), 560–570.CrossRefGoogle Scholar
  18. Petersen, H., & Luxton, M. (1982). A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos, 39, 288–388.CrossRefGoogle Scholar
  19. Renella, G., Ogunseitan, O., Giagnoni, L., & Arenella, M. (2014). Environmental proteomics: A long march in the pedosphere. Soil Biology and Biochemistry, 69, 34–37.CrossRefGoogle Scholar
  20. Schimel, J., & Schaeffer, S. (2012). Microbial control over carbon cycling in soil. Frontiers in Microbiology, 3, 348.CrossRefGoogle Scholar
  21. Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., K¨ogel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S., & Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478, 49–56.CrossRefGoogle Scholar
  22. Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A. B., de Remy de Courcelles, V., Singh, K., Wheeler, I., Abbott, L., Angers, D. A., Baldock, J., Bird, M., Brookes, P. C., Chenu, C., Jastrow, J. D., Lal, R., Lehmann, J., O’Donnell, A. G., Parton, W. J., Whitehead, D., & Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment, 164, 80–99.CrossRefGoogle Scholar
  23. Van Paassen, L. A., Daza, C. M., Staal, M., Sorokin, D. Y., van der Zon, W., & van Loosdrecht, M. C. (2010). Potential soil reinforcement by biological denitrification. Ecological Engineering, 36(2), 168–175.CrossRefGoogle Scholar
  24. Vats, S. (2017). Methods for extractions of value-added nutraceuticals from lignocellulosic wastes and their health application. In Ingredients extraction by physicochemical methods in food (pp. 1–64). Washington, DC: American Chemical Society.Google Scholar
  25. Vats, S., & Kumar, R. (2015). Amylolytic-extremoenzymes: Saviour of environments. European Journal of Biomedical and Pharmaceutical Sciences, 2(5), 694–702.Google Scholar
  26. Vats, R., & Mishra, A. (2016). Soil agro-ecological management by vermicompost a potential organic nutrient source for the state of Uttar Pradesh. European Journal of Pharmaceutical and Medical Research, 3(9), 604–609.Google Scholar
  27. Vats, S., Kumar, R., & Miglani, A. K. (2011). Isolation, characterization and identification of high salinity tolerant, heavy metal contaminant and antibiotics resistant amylolytic-thermophilic pseudomonas Sp. International Journal of Pharmaceutical Sciences Review and Research, 10(2), 125–129.Google Scholar
  28. Vig, K., Megharaj, M., Sethunathan, N., & Naidu, R. (2003). Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: A review. Advances in Environmental Research, 8(1), 121–135.CrossRefGoogle Scholar
  29. Zhongjun, J. I. A., Kuzyakov, Y., Myrold, D., & Tiedje, J. (2017). Soil organic carbon in a changing world. Pedosphere, 27(5), 789–791.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Biosciences and TechnologyShri Ramswaroop Memorial UniversityBarabankiIndia

Personalised recommendations