Skip to main content

Role of Bacteria in Pedogenesis

  • Chapter
  • First Online:
Mycorrhizosphere and Pedogenesis

Abstract

Most commonly microorganisms are known as disease causing agents amongst common people but when we turn towards their positive aspects they do wonderful things. Microbes have remained an integral part of soil since ever earth originated. They are capable of turning soil into waste land and further into productive soil. A teaspoon of soil contains millions of bacteria which functions to increase soil fertility and plant growth by providing air, minerals and organic compounds. These microbes are primary decomposers of organic matter. The physical and chemical composition of soil varies throughout the earth. The soil bearing high number of microorganisms considered as most fertile soil. These tiny creatures ensure the permanent existence of nutrients in soil. Due to their role in pedogenesis and improvement of soil fertility these minute entities have become major subject of investigation in recent past. Nutrient development in soil is carried out via biological transformation through action of microorganism. Without microbes, soil would be a virtually inert (lifeless) body but with them, soil is truly a living, dynamic system. Microbes and the humus produced by them work as a glue to hold soil particles together in aggregates hence improves soil tilth and decrease soil depletion or erosion. Well aggregated soil provides the rightful combination of air and water to plant roots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aislabie, J., & Deslippe, J. R. (2013). Soil microbes and their contribution to soil services. In J. R. Dymond (Ed.), Ecosystem services in New Zealand – conditions and trends. Lincoln: Manaaki Whenua Press.

    Google Scholar 

  • Aislabie, J., Davison, A. D., Boul, H. L., Franzmann, P. D., Jardine, D. R., & Karuso, P. (1999). Isolation of Terrabacter sp. strain DDE-1 which metabolises DDE when induced with biphenyl. Applied and Environmental Microbiology, 65, 5607–5611.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aislabie, J., Bej, A. K., Ryburn, J., Lloyd, N., & Wilkins, A. (2005). Characterization of Arthrobacter nicotinovorans HIM, an atrazine-degrading bacterium, from agricultural soil New Zealand. FEMS Microbiology Ecology, 52, 279–286.

    Article  CAS  Google Scholar 

  • Almario, J., et al. (2013). Effect of clay mineralogy on iron bioavailability and rhizosphere transcription of 2,4-diacetylphloroglucinol biosynthetic genes in biocontrol Pseudomonas protegens. Molecular Plant-Microbe Interactions, 26, 566–574.

    Article  CAS  Google Scholar 

  • Antoun, H., & Kloepper, J. W. (2001). Plant growth promoting rhizobacteria. In S. Brenner & J. H. Miller (Eds.), Encyclopedia of genetics (pp. 1477–1480). New York: Academic.

    Chapter  Google Scholar 

  • Banfield, J. F., et al. (1999). Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proceedings of the National Academy of Sciences of the United States of America, 96, 3404–3411.

    Article  CAS  Google Scholar 

  • Bin, L., Ye, C., & Yuan, T. (2010). Microbes on carbonate rocks and pedogenesis in karst regions. Journal of Earth Science, 21, 293–296.

    Article  Google Scholar 

  • Buol, S. W., Hole, F. D., & McCracken, R. J. (1973). Soil genesis and classification (1st ed.). Ames: Iowa State University Press. ISBN 978-0-8138-1460-5.

    Google Scholar 

  • Burford, E. P., Hillier, S., & Gadd, G. M. (2006). Biomineralization of fungal hyphae with calcite (CaCO3) and calcium oxalate mono- and dihydrate in carboniferous limestone microcosms. Geomicrobiology Journal, 23(8), 599–611.

    Article  CAS  Google Scholar 

  • Calvaruso, C., et al. (2007). Impact of ectomycorrhizosphere on the functional diversity of soil bacterial and fungal communities from a forest stand in relation to nutrient mobilization processes. Microbiol Ecology, 54, 567–577.

    Article  Google Scholar 

  • Carson, J. K., et al. (2007). Altering the mineral composition of soil causes a shift in microbial community structure. FEMS Microbiology Ecology, 61, 414–423.

    Article  CAS  Google Scholar 

  • Chen, S., Lian, B., & Liu, C. Q. (2008). Effect of Bacillus mucilaginosus on weathering of phosphorite and a preliminary analysis of bacterial proteins. Chinese Journal of Geochemistry, 27(2), 209–216.

    Article  Google Scholar 

  • De Boer, W., Leveau, J. H. J., Kowalchuk, G. A., Klein Gunnewiek, P. J. A., Abeln, E. C. A., Figgge, M. J., et al. (2004). Collimonas fungivorans gen. nov., sp. nov., a chitinolytic soil bacterium with the ability to grow on living fungal hyphae. International Journal of Systematic and Evolutionary Microbiology, 54, 857–864.

    Article  Google Scholar 

  • Dou, C. W., & Lian, B. (2009). Microbial weathering of calcite by rock fungi. Acta Mineralogical Sinica, 29(3), 387–391.

    CAS  Google Scholar 

  • Eilers, K. G., Lauber, C. L., Knight, R., & Fierer, N. (2010). Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biology and Biochemistry, 42, 896–903.

    Article  CAS  Google Scholar 

  • Fierer, N., Bradford, M. A., & Jackson, R. B. (2007). Towards an ecological classification of soil bacteria. Ecol, 88, 1354–1364.

    Article  Google Scholar 

  • Frey, B., et al. (2010). Weathering-associated bacteria from the Damma glacier for efield: Physiologica lcapabilities and impact on granite dissolution. Applied and Environmental Microbiology, 76, 4788–4796.

    Article  CAS  Google Scholar 

  • Gleeson, D. B., et al. (2006). Characterization of bacterial community structure on a weathered pegmatitic granite. Microbial Ecology, 51, 526–534.

    Article  Google Scholar 

  • Gorbushina, A. A. (2007). Life on the rocks. Environmental Microbiology, 9, 1613–1631.

    Article  CAS  Google Scholar 

  • Gorbushina, A. A., Whitehead, K., Dornieden, T., et al. (2003). Black fungal colonies as units of survival: Hyphal mycosporines synthesized by rock dwelling microcolonial fungi. Canadian Journal of Botany, 81(2), 131–138.

    Article  CAS  Google Scholar 

  • Hiltner, L. (1904). Ãœber neuere erfahrungen und probleme auf dem gebiete der bodenbakteriologie unter besonderer berücksichtigung der gründüngung und brache. Arb Landwirt Dtsch Ges, 98, 59–78.

    Google Scholar 

  • Huddleston, J. H., & Kling, G. F. (1984). Manual for judging oregon soils. Corvallis: Oregon State University Extension Service.

    Google Scholar 

  • Ingham, E. R. (2009). Soil biology primer, Chapter 4: Soil fungus (pp. 22–23). Ankeny: Soil & Water Conservation Society. soils.usda.gov/sqi/concepts/soil_biology.

    Google Scholar 

  • Khatoon, H., Solanki, P., Narayan, M., Tewari, L., & Rai, J. P. N. (2017). Role of microbes in organic carbon decomposition and maintenance of soil ecosystem. International Journal of Chemical Studies, 5(6), 1648–1656.

    CAS  Google Scholar 

  • Kuráň, P., Trögl, J., Nováková, J. et al. (2014). Biodegradation of spilled diesel fuel in agricultural soil: Effect of humates, zeolite, and bioaugmentation. Scientific W J, Article ID 642427, 8 pages. https://doi.org/10.1155/2014/642427.

    Article  Google Scholar 

  • Lang, F. S., Tarayre, C., Destain, J., Delvigne, F., Druart, P., Ongena, M., & Thonart, P. (2016). The effect of nutrients on the degradation of hydrocarbons in mangrove ecosystems by microorganisms semboung. International Journal of Environmental Research, 10(4), 583–592.

    Google Scholar 

  • Lepleux, C., et al. (2012). Correlation of the abundance of beta- proteobacteria on mineral surfaces with mineral weathering in forest soils. Applied and Environmental Microbiology, 78, 7114–7119.

    Article  CAS  Google Scholar 

  • Lian, B., Chen, Y., Zhu, L. J., et al. (2008). Progress in the study of the weathering of carbonate rock by microbes. Earth Science Frontiers, 15(6), 90–99.

    Article  Google Scholar 

  • Löhnis, F., & Fred, E. B. (1923). Textbook of agricultural bacteriology. New York: McGraw–Hill.

    Google Scholar 

  • McNamara, C. J., et al. (2006). Epilithic and endolithic bacterial communities in limestone from a Maya archaeological site. Microbial Ecology, 51, 51–64.

    Article  Google Scholar 

  • Mosier, A. R., Syers, J. K., & Freney, J. R. (Eds.). (2004). Agriculture and the Nitrogen Cycle: Assessing the Impacts of Fertilizer Use on Food Production and the Environment (SCOPE Series 65). Washington, DC: Island Press.

    Google Scholar 

  • Olsso-Francis, K., et al. (2010). Microarray analysis of a microbe– mineral interaction. Geobiology, 8, 446–456.

    Article  Google Scholar 

  • Prasad, J. K., Gupta, S. K., & Raghuwanshi, R. (2017). Screening multifunctional plant growth promoting rhizobacteria strains for enhancing seed germination in wheat (Triticum aestivum L.). International Journal of Agricultural Research, 12, 64–72.

    Article  CAS  Google Scholar 

  • Seneviratne, G., & Indrasena, I. K. (2006). Nitrogen fixation in lichens is important for improved rock weathering. Journal of Biosciences, 31, 639–643.

    Article  Google Scholar 

  • Shelobolina, E. S., Xu, H., Konishi, H., Kukkadapu, R. K., Wu, T., Blothe, M., & Roden, E. E. (2012). Microbial Lithotrophic Oxidation of Structural Fe(II) in Biotite. Applied and Environmental Microbiology, 78(16), 5746–5752.

    Article  CAS  Google Scholar 

  • Thompson, L. M., & Troeh, F. R. (1973). Soils and soil fertility (3rd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Treseder, K. K., Kivlin, S. N., & Hawkes, C. V. (2011). Evolutionary trade-offs among decomposers determine responses to nitrogen enrichment. Ecology Letters, 14, 933–938.

    Article  Google Scholar 

  • Uroz, S., et al. (2007). Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Applied and Environmental Microbiology, 73, 3019–3027.

    Article  CAS  Google Scholar 

  • Uroz, S., Calvaruso, C., Turpault, M. P., & Frey-Klett, P. (2009). Mineral weathering by bacteria: ecology, actors and mechanisms. Trends in Microbiology, 17(8), 378–387.

    Article  CAS  Google Scholar 

  • Vera, M., et al. (2013). Shotgun proteomics study of early biofilm formation process of Acidithiobacillus ferrooxidans ATCC 23270 on pyrite. Proteomics, 13, 1133–1144.

    Article  CAS  Google Scholar 

  • Vessey, J. K., & Buss, T. J. (2002). Bacillus cereus UW85 inoculation effects on growth, nodulation and N accumulation in grain legumes. Controlled-environment studies. Canadian Journal of Plant Science, 82, 282–290.

    Article  Google Scholar 

  • Viles, H. A., & Gorbushina, A. A. (2003). Soiling and Microbial Colonisation on Urban Roadside Limestone: A Three Year Study in Oxford England. Building and Environment, 38(9–10), 1217–1224.

    Article  Google Scholar 

  • Walker, T. S., Bais, H. P., Grotewold, E., & Vivanco, J. M. (2003). Root exudation and rhizosphere biology. Plant Physiology, 132, 44–51.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, P., Bhakri, G. (2019). Role of Bacteria in Pedogenesis. In: Varma, A., Choudhary, D. (eds) Mycorrhizosphere and Pedogenesis. Springer, Singapore. https://doi.org/10.1007/978-981-13-6480-8_10

Download citation

Publish with us

Policies and ethics