0-1 Integer Programming Based on DNA Tetrahedral Probe

  • Jing Yang
  • Xinmu Yang
  • Zhixiang YinEmail author
  • Zhang Qiang
  • Jianzhong Cui
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 986)


It is difficult to find an effective algorithm for solving NP complete problems such as integer programming. The nanostructure constructed by DNA origami combines huge parallelism and massive storage capacity of DNA computing. In the calculation process, it can effectively avoid the number of experimental operations required by other DNA computing models. It greatly reduces the time consumption and the rate of misinterpretation, thus providing an effective way to efficiently solve integer programming. DNA tetrahedron is a nanostructure constructed by origami. It has stable structure, good toughness and compression resistance, simple production process, high yield, rich functional modification sites, good biocompatibility, but also resistance to a variety of specific or non-specific nuclease. Therefore it can reduce the misinterpretation rate of biochemical reactions using DNA tetrahedron and DNA single strand to construct probes, finding the true solution according to the constraint condition. And then it can improve the computational efficiency of the model.


DNA tetrahedron 0-1 integer programming DNA origami DNA computing 



This project is supported by National Natural Science Foundation of China (No. 61702008, No. 61672001) and Anhui Natural Science Foundation (No. 1808085MF193).


  1. 1.
    Seeman, N.C.: Structural DNA nanotechnology: growing along with nano letters. Nano Lett. 10(6), 1971–1978 (2010)CrossRefGoogle Scholar
  2. 2.
    LaBean, T.H.: Nanotechnology: another dimension for DNA art. Nature 459(7245), 331–332 (2009)CrossRefGoogle Scholar
  3. 3.
    Yang, X., Wenzler, L.A., Qi, J., et al.: Ligation of DNA triangles containing double crossover molecules. J. Am. Chem. Soc. 120(38), 9779–9786 (1998)CrossRefGoogle Scholar
  4. 4.
    Winfree, E., Liu, F., Wenzler, L.A., et al.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)CrossRefGoogle Scholar
  5. 5.
    Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)CrossRefGoogle Scholar
  6. 6.
    Seeman, N.C.: Nucleic-acid Junctions and Lattices. J. Theor. Biol. 99(11), 237–247 (1982)CrossRefGoogle Scholar
  7. 7.
    Winfree, E., Liu, F.R., Sedman, N.C.: Design and self-assemble of two-dimensional DNA crvstals. Nature 394, 539–544 (1998)CrossRefGoogle Scholar
  8. 8.
    Rothemund, P.W., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2, 2041–2053 (2004)CrossRefGoogle Scholar
  9. 9.
    Sa-Ardyen, P., Vologodskii, A.V., Seeman, N.C.: The flexibility of DNA double crossover molecules. Biophys. J. 84, 3829–38371 (2003)CrossRefGoogle Scholar
  10. 10.
    Fu, T.J., Seeman, N.C.: DNA double-crossover molecules. Biochemistry 32, 3211–3220 (1993)CrossRefGoogle Scholar
  11. 11.
    Li, X.J., Yang, X.P., Oi, J., et al.: Antiparallel DNA double crossover molecules as components for nanoconstruction. J. Am. Chem. Soc. 118, 6131–6140 (1996)CrossRefGoogle Scholar
  12. 12.
    LaBean, T.H., Yan, H., Kopatsch, J., et al.: Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 122, 1848–18601 (2000)CrossRefGoogle Scholar
  13. 13.
    Yan, H., Park, S.H., Finkelstein, G., et al.: DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884 (2003)CrossRefGoogle Scholar
  14. 14.
    He, Y., Chen, Y., Liu, H.P., et al.: Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J. Am. Chem. Soc. 127, 12202–122031 (2005)CrossRefGoogle Scholar
  15. 15.
    He, Y., Ye, T., Su, M., et al.: Hierarchical self-assembly of DNA into symmetric supramolecular polyhedral. Nature 452, 198–201 (2008)CrossRefGoogle Scholar
  16. 16.
    Zhang, F., Nangreave, J., Liu, Y., et al.: Reconfigurable DNA origami to generate quasifractal patterns. Nano Lett. 12, 3290–3295 (2012)CrossRefGoogle Scholar
  17. 17.
    Wei, B.R., Dai, M.J., Yin, P.: Complex shapes self-assembled from single-stranded DNA tiles. Nature 485, 623–626 (2012)CrossRefGoogle Scholar
  18. 18.
    Douglas, S.M., Chou, J.J., Shih, W.M.: DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc. Natl. Acad. Sci. USA 104, 6644–6648 (2007)CrossRefGoogle Scholar
  19. 19.
    Andersen, E.S., et al.: DNA origami design of dolphin-shaped structures with flexible tails. ACS Nano 2(6), 1213–1218 (2008)CrossRefGoogle Scholar
  20. 20.
    Dietz, H., Douglas, S.M., Shih, W.M.: Folding DNA into twisted and curved nanoscale shapes. Science 325(5941), 725–730 (2009)CrossRefGoogle Scholar
  21. 21.
    Ke, Y., Sharma, J., Liu, M., Jahn, K., Liu, Y., Yan, H.: Scaffolded DNA origami of a DNA tetrahedron molecular container. Nano Lett. 9(6), 2445–2447 (2009)CrossRefGoogle Scholar
  22. 22.
    Han, D., et al.: DNA gridiron nanostructures based on four-arm junctions. Science 339(6126), 1412–1415 (2013)CrossRefGoogle Scholar
  23. 23.
    Kim, K.R., Kim, D.R., Lee, T., Yhee, J.Y., Kim, B.S., Abn, D.R.: Drug delivery by a self-assembled DNA tetrahedron for overcoming drug resistance in breast cancer cells. Chem. Commun. 49(20), 2010–2012 (2013)CrossRefGoogle Scholar
  24. 24.
    Williams, S., Lund, K., Lin, C., Wonka, P., Lindsay, S., Yan, H.: Tiamat: a three-dimensional editing tool for complex DNA structures. In: Goel, A., Simmel, F.C., Sosík, P. (eds.) DNA 2008. LNCS, vol. 5347, pp. 90–101. Springer, Heidelberg (2009). Scholar
  25. 25.
    Zhu, J., Wei, B., Yuan, Y., et al.: UNIQUIMER 3D, a software system for structural DNA nanotechnology design, analysis and evaluation. Nucleic Acids Res. 37(7), 2164 (2009)CrossRefGoogle Scholar
  26. 26.
    Goodman, R.P.: NANEV: a program employing evolutionary methods for the design of nucleic acid nanostructures. Biotechniques 38(4), 548–550 (2005)CrossRefGoogle Scholar
  27. 27.
    Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bull. Am. Math. Soc. 64, 275–278 (1958)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wang, S.Y., Yang, A.M.: DNA solution of integer linear programming. Appl. Math. Comput. 170, 626–632 (2005)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(11), 1021–1024 (1994)CrossRefGoogle Scholar
  30. 30.
    Yin, Z.X., Zhang, F.Y., Xu, J.: The general form of 0-1 programming problem based on DNA computing. Biosystems 70(1), 73–79 (2003)CrossRefGoogle Scholar
  31. 31.
    Zhang, F.Y., Yin, Z.X., Xu, J.: Application of DNA chip on 0-1 planning problem. Biochem. Biophys. 30(3), 412–415 (2003)Google Scholar
  32. 32.
    Yin, Z.X., Zhang, F.Y., Xu, J.: 0-1 DNA computing model for programming problem. J. Electron. Inf. 15(1), 1–5 (2003)Google Scholar
  33. 33.
    Wang, L., Lin, Y.P., Li, Z.Y.: DNA computation for a category of special integer programming problem. J. Comput. Res. Dev. 42(8), 1431–1437 (2005)CrossRefGoogle Scholar
  34. 34.
    Zhou K., Tong X.J., Xu J.: The improvement on algorithm of DNA computing on 0-1 programming problem. In: Proceedings of the Fifth International Conference on Machine Learning and Cybernetics, Dalian, pp. 4282–4286 (2006)Google Scholar
  35. 35.
    Yang, J., Yin, Z.: 0-1 integer programming problem based on RecA- mediated triple- stranded DNA structure. Comput. Eng. Appl. 44(2), 76–79 (2008)Google Scholar
  36. 36.
    Zhang, X.C., Niu, Y., Cui, G.Z., et al.: Application of DNA self-assembly on 0-1 integer programming problem. J. Comput. Theor. Nanosci. 7(1), 165–172 (2010)CrossRefGoogle Scholar
  37. 37.
    Li, F., Liu, J., Li, Z.: DNA computation model based on self-assembled nanoparticle probes for 0–1 integer programming problem. Math. Comput. Simul. 151, 1–4 (2017)Google Scholar
  38. 38.
    Yin, Z., Cui, J., Yang, J.: Integer programming problem based on plasmid DNA computing model. Chin. J. Electron. 26(6), 1284–1288 (2017)CrossRefGoogle Scholar
  39. 39.
    Chen, Y.H., Sha, S.: Molecular beacon model of 0-1 integer programming based on microfluidic chip. J. Guangdong Polytech. Norm. Univ. 2, 004 (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jing Yang
    • 1
  • Xinmu Yang
    • 1
  • Zhixiang Yin
    • 1
    Email author
  • Zhang Qiang
    • 1
    • 2
  • Jianzhong Cui
    • 1
  1. 1.School of Mathematics and Big DataAnhui University of Science and TechnologyHuainanChina
  2. 2.School of ComputerDalian University of TechnologyDalianChina

Personalised recommendations