A Computing Model for Four-Valued Logic AND Gate Based on DNA Origami and DNA Displacement

  • Zhen TangEmail author
  • Zhixiang Yin
  • Xia Sun
  • Jing Yang
  • Jianzhong Cui
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 986)


A four-valued logic AND gate model is constructed by DNA origami and DNA strand displacement. Different input signals are designed into different input DNA strands, the results of the input signals are determined by observing whether the hairpin structures are unwound (the length of the long strand is changed) and the fluorescence colors are quenching. The biological expectation results show that the model can not only judge the false and true states of the four valued logic AND gate, other states in four-valued logic AND gate can also be well displayed by the long strand length changed and fluorescence quenching.


DNA displacement DNA origami Four-valued logic AND gate 



This work is supported by National Natural Science Foundation of China (NO. 61672001, 61702008) and National Natural Science Foundation of Anhui (NO. 1808085MF193).


  1. 1.
    Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Lipton, R.J.: Using DNA to solve NP-complete problems. Science 268(5120), 542–545 (1995)CrossRefGoogle Scholar
  3. 3.
    Sakamoto, K., Gouzu, H., Komiya, K., et al.: Molecular computation by DNA hairpin formation. Science 288(5469), 1223–1226 (2000)CrossRefGoogle Scholar
  4. 4.
    Yurke, B., Turberfield, A.J., Mills Jr., A.P., et al.: A DNA-fuelled molecular machine made of DNA. Nature 406(6796), 605–608 (2000)CrossRefGoogle Scholar
  5. 5.
    Qian, L.L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)CrossRefGoogle Scholar
  6. 6.
    Qian, L.L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement cascades. Nature 475(7356), 368–372 (2011)CrossRefGoogle Scholar
  7. 7.
    Rothemund, P.W.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)CrossRefGoogle Scholar
  8. 8.
    Qian, L., Wang, Y., Zhang, Z., et al.: Analogic China map constructed by DNA. Chin. Sci. Bull. 51(24), 2973–2976 (2006)CrossRefGoogle Scholar
  9. 9.
    Andersen, E.S., Dong, M., Nielsen, M.M., et al.: DNA origami design of dolphin-shaped structures with flexible tails. ACS Nano 2(6), 1213–1218 (2008)CrossRefGoogle Scholar
  10. 10.
    Douglas, S.M., Bachelet, I., Church, G.M.: A logic-gated nanorobot for targeted transport of molecular payloads. Science 335(6), 831–834 (2011)Google Scholar
  11. 11.
    Tomov, T.E., Tsukanov, R., Liber, M., et al.: Rational design of DNA motors: fuel optimization through single-molecule fluorescence. J. Am. Chem. Soc. 135(32), 11935–11941 (2013)CrossRefGoogle Scholar
  12. 12.
    Amir, Y., Benishay, E., Levner, D., et al.: Universal computing by DNA origami robots in a living animal. Nat. Nanotechnol. 9(5), 353–357 (2014)CrossRefGoogle Scholar
  13. 13.
    Tikhomirov, G., Petersen, P., Qian, L., et al.: Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature 552(7683), 67–71 (2017)CrossRefGoogle Scholar
  14. 14.
    Ong, L.L., Hanikel, N., Yaghi, O.K., et al.: Programmable self-assembly of three- dimensional nanostructures from 10,000 unique components. Nature 552(7683), 72–77 (2017)CrossRefGoogle Scholar
  15. 15.
    Wagenbauer, K.F., Sigl, C., Dietz, H.: Gigadalton-scale shape-programmable DNA assemblies. Nature 552(7683), 78–83 (2017)CrossRefGoogle Scholar
  16. 16.
    Praetorius, F., Kick, B., Behler, K.L., et al.: Biotechnological mass production of DNA origami. Nature 552(7683), 84–87 (2017)CrossRefGoogle Scholar
  17. 17.
    Yin, Z.X., Zhao, X.Y.: A computing model for three-valued logic AND gate based on DNA origami. J. Hefei Univ. Technol. (Nat. Sci.) 41(2), 176–194 (2018)Google Scholar
  18. 18.
    Chen, S.K., Yan, B.C., Wu, J.H., et al.: The study on the discrete logic circuit of 4 values ‘and not gate’. J. Electric Power Sci. Technol. 16(4), 35–37 (2001)Google Scholar
  19. 19.
    George, A.K., Singh, H.: DNA strand displacement-based logic inverter gate design. Micro Nano Lett. 12(9), 611–614 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Zhen Tang
    • 1
    Email author
  • Zhixiang Yin
    • 1
  • Xia Sun
    • 1
  • Jing Yang
    • 1
  • Jianzhong Cui
    • 1
  1. 1.Anhui University of Science and TechnologyHuainanChina

Personalised recommendations