Skip to main content
  • 715 Accesses

Abstract

As the power unit of missiles, an engine is required to have the ability of thrust control, especially with the ability of random thrust control, to enhance the vehicle maneuverability and penetration ability of missiles. Thrust control technology is an important research field of solid rocket motors. Compared to the thrust-predetermined solid rocket motor (single-chamber dual-thrust motor, etc.), random thrust control can more reasonably distribute the energy of propellant according to real-time work needs, which is a development trend for solid rocket motors. Achieving random control of thrust will mean a major breakthrough in solid rocket motor technology. Randomly changing the nozzle-throat area is an effective method of adjusting the rocket motor thrust. In a fixed nozzle contour, there are mainly two types of methods to change the nozzle-throat area: mechanical methods and fluid injection. This chapter mainly introduces the research of fluid methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Napior, J., Garmy, V.: Controllable solid propulsion for launch vehicle and spacecraft application. In: The 57th International Astronautical Congress, October 2006

    Google Scholar 

  2. Ostrander, M.J., Bergmans, J.L., Thomas, M.E.: Pintle motor challenges for tactical missiles. AIAA Paper 2000-3310 (2000)

    Google Scholar 

  3. Yilin, W., Guoqiang, H., Jiang, L., Fei, Q.: Experiment on non-coaxial variable thrust pintle solid motor. J. Solid Rocket Technol. 31(1) (2008)

    Google Scholar 

  4. Juan, L., Jiang, L., Yilin, W., Fei, Q.: Study on performance of pintle controlled thrust solid rocket motor. J. Solid Rocket Technol. 30(6) (2007)

    Google Scholar 

  5. Lihui, H., Weiping, T., Xiaosong, G., et al.: Numerical simulation on steady flow field of variable thrust motor nozzle with pintle. J. Solid Rocket Technol. 31(4) (2008)

    Google Scholar 

  6. Juan, L.: The Thrust Control Performance of Pintle Rocket Motor. Northwestern Polytechnical University, Xi’an (2007)

    Google Scholar 

  7. Nelson, C., Roberts, R., Fish, V.: The vortex valve controlled rocket motor. AIAA Paper 68-538 (1968)

    Google Scholar 

  8. Kasselmann, J.T., Delozier, T.R.: Fluidic valve for warm gas flow control. AIAA Paper 69-118 (1969)

    Google Scholar 

  9. Knuth, W.H., Chiaverini, M.J., Gramer, D.J., et al.: Experimental investigation of a vortex-driven high-regression rate hybrid rocket engine. AIAA Paper 98-3348 (1998)

    Google Scholar 

  10. Blatter, A., Keranen, T.W.: Research and development of a vortex valve for flow modulation of a 16-percent aluminized 550 °F solid propellant gas. AIAA Paper 69-424 (1994)

    Google Scholar 

  11. Jawarneh, A., Vatistas, G.H.: Vortex chamber flows. AIAA Paper 2004-5620 (2004)

    Google Scholar 

  12. Mager, A.: Incompressible, viscous, swirling flow through a nozzle. AIAA Paper 70-51 (1970)

    Google Scholar 

  13. Sigal, A.: Vortex flow in a convergent-divergent nozzle. AIAA J. 37(10), 1329–1331 (1999)

    Article  Google Scholar 

  14. Darmofal, D.L., Khan, R., Greitzer, E.M., et al.: Vortex core behavior in confined and unconfined geometries: a quasi-one-dimensional model. J. Fluid Mech. 449(1), 61–84 (2001)

    Article  MathSciNet  Google Scholar 

  15. Marcum, D.L., Hoffman, J.D.: Calculation of three-dimensional inviscid flow fields in propulsive nozzle with center bodies. J. Propul. Power 4(2), 172–179 (1988)

    Article  Google Scholar 

  16. Yu, X.J., He, G.Q., Li, J., et al.: Numerical analysis of flow in variable thrust SRM. AIAA Paper 2007-5801 (2007)

    Google Scholar 

  17. Martin, A.I.: The aerodynamic variable nozzle. J. Aeronaut. Sci. 24(5), 357 (1957)

    Article  Google Scholar 

  18. McArdle, J.G.: Internal characteristics and performance of an aerodynamically controlled, variable discharge convergent nozzle. NACA TN4312, July 1958

    Google Scholar 

  19. McAulay, J E.: Cold-air investigation of three variable-throat-area convergent-divergent nozzles. NASA TM X-42, September 1959

    Google Scholar 

  20. Blaszak, J.J., Fahrenholz, F.E.: Rocket Thrust Control by Gas Injection. Massachusetts Institute of Technology, Naval Supersonic Laboratory, Technical Report 430, November 1960

    Google Scholar 

  21. Gunter, F.L., Fahrenholz, F.E.: Final Report on a Study of Rocket Thrust Control by Gas Injection. Massachusetts Institute of Technology, Naval Supersonic Laboratory, Technical Report 448, May 1961

    Google Scholar 

  22. Zumwalt, G.W., Jackomis, W.N.: Aerodynamic throat nozzle for thrust magnitude control of solid fuel rockets. Am. Rocket Soc. J. (1962)

    Google Scholar 

  23. Catt, J., Miller, D.N.: A static investigation of fixed-geometry nozzles using fluidic injection for throat area controls. AIAA Paper 95-2604

    Google Scholar 

  24. Hawkes, T.: Lessons learned in the development of a national cooperative programe. AIAA Paper 97-3348

    Google Scholar 

  25. Weber, Y.S., Bower, D.L.: Advancements in exhaust system technology for the 21st century. AIAA Paper 98-3100

    Google Scholar 

  26. Miller, D.N., Yagle, P.J., Hamstra, J.W.: Fluidic throat skewing for thrust vectoring in fixed-geometry nozzles. AIAA Paper 99-0365

    Google Scholar 

  27. Vakili, A., Sauerwein, S., Miller, D.: Pulsed injection applied to nozzle internal flow control. AIAA Paper 99-1002

    Google Scholar 

  28. Yagle, P.J., Miller, D.N., Bender, E.E., et al.: A computational investigation of pulsed ejection. AIAA Paper 2002-3278

    Google Scholar 

  29. Miller, D.N., Yagle, P.J., Bender, E.E., et al.: A computational investigation of pulsed injection into a confined, expanding crossflow. AIAA Paper 2001-3026

    Google Scholar 

  30. Williams, R.G., Vittal, B.R.: Fluidic thrust vectoring and throat control exhaust nozzle. AIAA Paper 2002-4060

    Google Scholar 

  31. Vermeulen, P.J.: An experimental study of the mixing behaviour of an acoustically pulsed air jet with a confined crossflow. AIAA Paper 88-3296

    Google Scholar 

  32. Zhang, Z. (ed.): Minuteman Intercontinental Ballistic Missiles. China Astronautic Publishing House, Beijing (1997)

    Google Scholar 

  33. China Aerospace Corporation: An Encyclopaedia of World Missile and Space Engines. Military Science Publishing House, Beijing (1999)

    Google Scholar 

  34. Li, Y., Zhongqin, Z., Zhao, Y.: Theory of Solid-Propellant Rocket, pp. 111–112. National Defense Industry Press, Beijing (1985)

    Google Scholar 

  35. Sun, M., Fang, D., Zhang, C.: The experimental and theoretical studies of two-dimensional two-phase nozzle flows. Acta Aeronaut. Astronaut. Sin. 9(11), 572–576 (1988)

    Google Scholar 

  36. Dunn, B.M., Durbin, M.R., Jones, A.L., et al.: Short range attack missile (SRAM) propulsion, 3 decades history. AIAA Paper 94-3059, June 1994

    Google Scholar 

  37. Quilici, J.L.: Nozzle development for the proposed AGM-130 rocket motor. AIAA Paper 84-1415, June 1984

    Google Scholar 

  38. Xie, K., Liu, Yu., Ren, J., Liao, Y.: An ideal method for the two-phase ring plug nozzle design. J. Solid Rocket Technol. 30(3), 223–228 (2007)

    Google Scholar 

  39. Kan, X., Yu, L., Junxue, R., Yunfei, L.: Design methods of two-phase axial plug nozzle. ACTA Aeronaut Astronaut Sin 28(6), 1339–1344 (2007)

    Google Scholar 

  40. Li, Y., Chen, L., Jian, Z.: Numerical study of two-phase nozzle flow with classified particles. J. Solid Rocket Technol. 26(3), 32–34 (2003)

    Google Scholar 

  41. Kliegel, J.R.: Gas particle nozzle flows. In: Ninth International Symposium on Combustion, pp. 811–826. Academic Press, New York (1963)

    Chapter  Google Scholar 

  42. Baruzzini, D., Domel, N., Miller, D.N., et al.: Pulsed injection flow control for throttling in supersonic nozzles—a computational fluid dynamics design study. AIAA Paper 2007-4215

    Google Scholar 

  43. Domel, N.D., Baruzzini, D., Miller, D.N., et al.: Pulsed injection flow control for throttling in supersonic nozzles—a computational fluid dynamics based performance correlation. AIAA Paper 2007-4214

    Google Scholar 

  44. Rona, A.: Control of transonic cavity flow instability by streamwise air injection. AIAA Paper 2004-682

    Google Scholar 

  45. Deere, K.A., Berrier, B.L., Flamm, J.D.: A computational study of a new dual throat fluidic thrust vectoring nozzle concept. AIAA Paper 2005-3502

    Google Scholar 

  46. Gamba1, M., Clemens, N.T., Jones, I.: Strongly-forced turbulent non-premixed jet flames in cross-flow. AIAA Paper 2007-1418

    Google Scholar 

  47. Gamble, E., Haid, D., Cannon: Improving off-design nozzle performance using fluidic injection. AIAA Paper 2004-1206

    Google Scholar 

  48. Haid, D., Gamble, E.J.: Nozzle aft body drag reduction using fluidics. AIAA Paper 2004-3921

    Google Scholar 

  49. Dziuba, M., Rossmann, T.: Active control of a sonic transverse jet in supersonic cross-flow using a powered resonance tube. AIAA Paper 2005-897

    Google Scholar 

  50. Venitzki, A.M.: Solid Propellant Rocket Engine (trans Jinkang Y). National Defense Industry Press, Beijing (1981)

    Google Scholar 

  51. Yongjiu, L.: Fluidic thrust vectoring control technology. Aircr. Des. 28(2) (2008)

    Google Scholar 

  52. Zhi, C.: Design Rule of Dual-Throat Fluidic Thrust Vectoring Nozzles and Exploration of Rear Fuselage Integration. Nanjing University of Aeronautics and Astronautics, Nanjing (2007)

    Google Scholar 

  53. Yongsheng, Z., Yankui, W., Xiaowei, Y., Xueying, D.: Design of secondary-divergent vectoring nozzle based on secondary fluidic injection. J. Beijing Univ. Aeronaut. Astronaut. 33(3) (2007)

    Google Scholar 

  54. Wang, Q., Fu, Y., Eriqitai: Computation of three dimensional nozzle flow field with fluidic injection. J. Propul. Technol. 23(6), 441–444 (2002)

    Google Scholar 

  55. Zhang, Q., Lv, Z., Wang, G., Liu, Z., Jin, J.: Numerical simulation of an axisymmetric fluidic vectoring nozzle. J. Propul. Technol. 25(2), 139–143 (2004)

    Google Scholar 

  56. Deng, Y., Zhong, Z., Song, W.: Computational investigation of secondary flow thrust vector control technology used in a convergent-divergent nozzle. J. Solid Rocket Technol. 28(1), 29–32 (2004)

    Google Scholar 

  57. Qiao, W., Cai, Y.: A study on the two-dimensional thrust vectoring nozzle with secondary flow injection. J. Aerosp. Power 16(3), 273–278 (2001)

    Google Scholar 

  58. Lu, B., Xu, X., Zhou, M.: Numerical simulation on rectangular jet vector nozzle. Aeroengine 34(1), 16–18 (2008)

    Google Scholar 

  59. Dechuan, S.: Study on Supersonic Flow Field with Secondary Injection and Its Control Parameters. Northwestern Polytechnical University, Xi’an (2002)

    Google Scholar 

  60. Deer, K.A.: Summary of fluidic thrust vectoring research conducted at NASA langley research center. AIAA 2003-3800 (2003)

    Google Scholar 

  61. Mason, M.S., Crowther, W.J.: Fluidic thrust vectoring for low observable air vehicles. AIAA 2004-2210 (2004)

    Google Scholar 

  62. Deere, K.A.: Computational investigation of the aerodynamic effects on fluidic thrust vectoring. AIAA 2000-3598 (2000)

    Google Scholar 

  63. Wing, D.J.: Static investigation of two fluidic thrust-vectoring concepts on a two-dimensional convergent-divergent nozzle. NASA TM-4574 (1994)

    Google Scholar 

  64. Chiarelli, C., Johnsen, R.K., Shieh, C.F., et al.: Fluidic scale model multi-plane thrust vector control test results. AIAA 93-2433 (1993)

    Google Scholar 

  65. Miller, D.N., Yagle, P.J., Hamstra, J.W.: Fluidic throat skewing for thrust vectoring in fixed geometry nozzles. AIAA-99-0365

    Google Scholar 

  66. Zhang, X., Wang, R., Yang, F.: Influence of double gas flow on fluid control vectoring nozzle. J. Solid Rocket Technol. 30(4), 295–298 (2007)

    Google Scholar 

  67. Zhou, M., Wang, R., Zhang, X., Xu, X.: Effect of jet flow distribution on fluidic throat skewing nozzle. J. Propul. Technol. 29(1), 58–61 (2008)

    Google Scholar 

  68. Jing, L., Wang, Q., Eriqitai, : Computational analysis of two fluidic thrust-vectoring concepts on nozzle flow field. J. Beijing Univ. Aeronaut. Astronaut. 30(7), 597–601 (2004)

    Google Scholar 

  69. Richard, J.Z.: Thrust vector control by liquid injection for solid propellant rockets. AIAA 75-1225 (1975)

    Google Scholar 

  70. Berdoyes, M.: Hot gas thrust vector control motor. In: 28th JPC, AIAA 92-3551

    Google Scholar 

  71. Green, C.J.: Liquid injection thrust vector control. AIAA J. 1(3), 573–578 (1963)

    Article  Google Scholar 

  72. Huang, J., Fan, C.: Testing Technology of Solid-Propellant Rocket Engines. Astonautic Publishing House, Beijing (1989)

    Google Scholar 

  73. Ali, A., Rodriguez, C.G., Neely, A.J., Young, J.: Combination of fluidic thrust modulation and vectoring in a 2D Nozzle. In: 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 30 July–01 August 2012, Atlanta, Georgia, AIAA 2012-3780

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Xie .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd. and National Defense Industry Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xie, K., Chen, X., Li, J., Liu, Y. (2019). Introduction. In: Fluidic Nozzle Throats in Solid Rocket Motors. Springer, Singapore. https://doi.org/10.1007/978-981-13-6439-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6439-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6438-9

  • Online ISBN: 978-981-13-6439-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics