Skip to main content

Plumbene: A New 2D-Material Resembling Graphene

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

Over two decades, two-dimensional materials attracted the attention of researches due to their superior mechanical and thermal properties. Plumbene, the new two-dimensional material, is a single layer of lead atoms hexagonally arranged like honeycomb structure. It already has the application as a topological insulator. In this paper, we will compare between structure and properties of graphene, silicene, and plumbene for the application of plumbene in batteries, machine manufacturing, shipbuilding, etc.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Maity S, Ganguly M (2003) Elements of chemistry 1. Publishing Syndicate, Kolkata

    Google Scholar 

  2. Das DK, Sahoo S (2014) Monolayer, bilayer and trilayer graphene. Phys Educ 30(3), article 4, 1

    Google Scholar 

  3. Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48:2127–2150

    Article  Google Scholar 

  4. Xie H, Hu M, Bao H (2014) Thermal conductivity of silicene from first-principles. Appl Phys Lett 104:131906

    Article  Google Scholar 

  5. Guzmán-Verri GG, Lew Yan Voon LC (2007) Electronic structure of silicon-based nanostructures. Phys Rev B (Condens Matter Mater Phys) 76:075131

    Google Scholar 

  6. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  Google Scholar 

  7. Lew Yan Voon LC, Sandberg E, Aga RS, Farajian AA (2010) Hydrogen compounds of group-IV nanosheets. Appl Phys Lett 97:163114

    Google Scholar 

  8. Lew Yan Voon LC (2016) Silicene: structure, properties and applications. In: Spencer M, Morishita T (eds). Springer

    Google Scholar 

  9. Yu XL, Huang L, Wu J (2017) From a normal insulator to a topological insulator in plumbene. Phys Rev B 95:125113

    Article  Google Scholar 

  10. Tsai W-F, Huang C-Y, Chang T-R, Lin H, Jeng H-T, Bansil A (2013) Gated silicene as a tunable source of nearly 100% spin-polarized electrons. Nat Commun 4(1500):1–6

    Google Scholar 

  11. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102(30):10451–10453

    Article  Google Scholar 

  12. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9–10):351–355

    Article  Google Scholar 

  13. Bolotin KI, Sikes KJ, Hone J, Stormer HL (2008) Temperature-dependent transport in suspended graphene. Phys Rev Lett 101:096802

    Article  Google Scholar 

  14. Lin YM, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu HY, Grill A, Avouris P (2010) 100-GHz transistors from wafer-scale epitaxial graphene. Science 327:662

    Article  Google Scholar 

  15. Zheng J, Wang L, Quhe R, Liu Q, Li H, Yu D, Mei W, Shi J, Gao Z, Lu J (2013) Sub-10 nm gate length graphene transistors: operating at terahertz frequencies with current saturation. Sci Rep 3(1314):1–9

    Google Scholar 

  16. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 6:1308

    Article  Google Scholar 

  17. Brownson DAC, Kampouris DK, Banks CE (2012) Graphene electrochemistry: fundamental concepts through to prominent applications. Chem Soc Rev 41(21):6944–6976

    Article  Google Scholar 

  18. Li X, Zhang Q, Chen X, Gu M (2013) Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording. Sci Rep 3(2819):1–4

    Google Scholar 

  19. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J, Kim P, Choi J, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710

    Article  Google Scholar 

  20. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  Google Scholar 

  21. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  Google Scholar 

  22. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    Article  Google Scholar 

  23. Ni Z, Zhong H, Jiang X, Quhe R, Luo G, Wang Y, Ye M, Yang J, Shi J, Lu J (2014) Tunable band gap and doping type in silicene by surface adsorption: towards tunneling transistors. Nanoscale 6(13):7609–7618

    Article  Google Scholar 

  24. Padova PD, Leandri C, Vizzini S, Quaresima C, Perfetti P, Olivieri B, Oughaddou H, Aufray B, Le Lay GL (2008) Burning match oxidation process of silicon nanowires screened at the atomic scale. Nano Lett 8(8):2299–2304

    Google Scholar 

  25. Liu G, Wu MS, Ouyang CY, Xu B (2012) Strain-induced semimetal-metal transition in silicene. EPL (Europhys Lett) 99(1):17010

    Google Scholar 

  26. Sahin HS, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger RT, Ciraci S (2009) Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations. Phys Rev B 80(15):155453

    Article  Google Scholar 

  27. Zhao H, Zhang C, Ji W, Zhang R, Li S, Yan S, Zhang B, Li P, Wang P (2016) Unexpected giant-gap quantum spin hall insulator in chemically decorated plumbene monolayer. Sci Rep 6:20152

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, D.K., Singh, S.K. (2019). Plumbene: A New 2D-Material Resembling Graphene. In: Shanker, K., Shankar, R., Sindhwani, R. (eds) Advances in Industrial and Production Engineering . Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-6412-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6412-9_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6411-2

  • Online ISBN: 978-981-13-6412-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics