Skip to main content

Introduction

  • Chapter
  • First Online:
  • 902 Accesses

Abstract

With the rapid development of the people’s demands for mobile communication in their daily life, the complex data communication and processing will become an important challenge to the future mobile communication. As the key part of the developing mobile communication technology, massive multiple-input multiple-output (MIMO) technology can improve the network capacity, enhance the network robustness and reduce the communication delay. However, as the number of antennas increases, so does the baseband processing complexity dramatically. The very large scale integration (VLSI) chip is the carrier of the massive antenna detection algorithm. The design of the massive MIMO baseband processing chip will become one of the bottlenecks in the real application of this technology, especially the design of massive MIMO detection chip with high complexity and low parallelism. The traditional MIMO detection processors, including the instruction set architecture processor (ISAP) and the application specific integrated circuit (ASIC), cannot simultaneously satisfy the three requirement indexes: energy efficiency, flexibility and scalability. In summary, the reconfigurable processor with the MIMO detection function can properly balance the requirements applied in sucs aspects as energy efficiency, flexibility and scalability, and it will be an important and promising development direction in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Niyato D, Maso M, Dong IK et al (2017) Practical perspectives on IoT in 5G networks: from theory to industrial challenges and business opportunities. IEEE Commun Mag 55(2):68–69

    Google Scholar 

  2. Le NT, Hossain MA, Islam A et al (2016) Survey of promising technologies for 5G networks. Mobile Inf Syst 2016(2676589):1–25

    Google Scholar 

  3. Osseiran A, Boccardi F, Braun V et al (2014) Scenarios for 5G mobile and wireless communications: the vision of the METIS project. Commun Mag IEEE 52(5):26–35

    Google Scholar 

  4. Andrews JG, Buzzi S, Wan C et al (2014) What will 5G be? IEEE J Sel Areas Commun 32(6):1065–1082

    Google Scholar 

  5. Peltier WR (2004) Geoide height Time dependence and global glacial isostasy: the ICE-5G(VM2) model and GRACE. In: AGU Spring meeting, 2004

    Google Scholar 

  6. Roh W, Seol JY, Park J et al (2014) Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. Commun Mag IEEE 52(2):106–113

    Google Scholar 

  7. Alberio M, Parladori G (2017) Innovation in automotive: a challenge for 5G and beyond network. In: 2017 International Conference of Electrical and electronic technologies for automotive, pp 1–6

    Google Scholar 

  8. Jiang H, Liu H, Guzzino K et al (2012) Digitizing the Yuan Tseh Lee array for microwave background anisotropy by 5 Gsps ADC boards. In: IEEE international conference on electronics, circuits and systems, pp 304–307

    Google Scholar 

  9. Manyika J, Chui M, Brown B et al (2011) Big data: the next frontier for innovation, competition, and productivity. Analytics

    Google Scholar 

  10. Walker SJ (2013) Big data: a revolution that will transform how we live, work, and think. Math. Comput. Educ. 47(17):181–183

    Google Scholar 

  11. Mell PM, Grance T (2011) SP 800-145. The NIST definition of cloud computing. National Institute of Standards & Technology, p 50

    Google Scholar 

  12. Buyya R, Yeo CS, Venugopal S et al (2009) Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Gener Comput Syst 25(6):599–616

    Google Scholar 

  13. Lewenberg Y, Sompolinsky Y, Zohar A (2015) Inclusive block chain protocols[C]. International conference on financial cryptography and data security. Springer, Berlin, Heidelberg, 2015:528–547

    Google Scholar 

  14. Li X, Baki F, Tian P et al (2014) A robust block-chain based tabu search algorithm for the dynamic lot sizing problem with product returns and remanufacturing. Omega 42(1):75–87

    Google Scholar 

  15. Hussein A, Elhajj IH, Chehab A et al (2017) SDN VANETs in 5G: an architecture for resilient security services. In: International conference on software defined systems, pp 67–74

    Google Scholar 

  16. Pan F, Wen H, Song H et al (2017) 5G security architecture and light weight security authentication. In: IEEE/CIC International conference on communications in china—workshops, pp 94–98

    Google Scholar 

  17. Bastug E, Bennis M, Medard M et al (2017) Toward interconnected virtual reality: opportunities, challenges, and enablers. IEEE Commun Mag 55(6):110–117

    Google Scholar 

  18. Parsons TD, Courtney CG (2018) Interactions between threat and executive control in a virtual reality stroop task. IEEE Trans Affect Comput 9(1): 66–75

    Google Scholar 

  19. Al-Shuwaili A, Simeone O (2017) Energy-efficient resource allocation for mobile edge computing-based augmented reality applications. IEEE Wireless Commun Lett PP(99):1

    Google Scholar 

  20. Chatzopoulos D, Bermejo C, Huang Z et al (2017) Mobile augmented reality survey: from where we are to where we go. IEEE Access 5(99):6917–6950

    Google Scholar 

  21. Azuma R, Baillot Y, Behringer R et al (2001) Recent advances in augmented reality. IEEE Comput Graphics Appl 21(6):34–47

    Google Scholar 

  22. Lin C, Dong F, Hirota K (2015) A cooperative driving control protocol for cooperation intelligent autonomous vehicle using VANET technology. In: Int Symp Soft Comput Intell Syst, 275–280

    Google Scholar 

  23. Guan Y, Wang Y, Bian Q et al (2017) High efficiency self-driven circuit with parallel branch for high frequency converters. IEEE Trans Power Electron PP(99):1

    Google Scholar 

  24. Scanlon JM, Sherony R, Gabler HC (2017) Models of driver acceleration behavior prior to real-world intersection crashes. IEEE Trans Intell Transp Syst PP(99):1–13

    Google Scholar 

  25. Marques M, Agostinho C, Zacharewicz G et al (2017) Decentralized decision support for intelligent manufacturing in Industry 4.0. J Ambient Intell. Smart Environ 9(3):299–313

    Google Scholar 

  26. Huang J, Xing CC, Wang C (2017) Simultaneous wireless information and power transfer: technologies, applications, and research challenges. IEEE Commun Mag 55(11):26–32

    Google Scholar 

  27. Shafi M, Molisch AF, Smith PJ et al (2017) 5G: a tutorial overview of standards, trials, challenges, deployment and practice. IEEE J Sel Areas Commun PP(99): 1

    Google Scholar 

  28. Tran TX, Hajisami A, Pandey P et al (2017) Collaborative mobile edge computing in 5G networks: new paradigms, scenarios, and challenges. IEEE Commun Mag 55(4):54–61

    Google Scholar 

  29. Benmimoune A, Kadoch M (2017) Relay technology for 5G networks and IoT applications. Springer International Publishing

    Google Scholar 

  30. Schulz P, Matthe M, Klessig H et al (2017) Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture. IEEE Commun Mag 55(2):70–78

    Google Scholar 

  31. Mehmood Y, Haider N, Imran M et al (2017) M2M communications in 5G: state-of-the-art architecture, recent advances, and research challenges. IEEE Commun Mag 55(9):194–201

    Google Scholar 

  32. Zhang X, Liang YC, Fang J (2017) Novel Bayesian inference algorithms for multiuser detection in M2M communications. IEEE Trans Veh Technol PP(99):1

    Google Scholar 

  33. Akpakwu GA, Silva BJ, Hancke GP et al (2017) A survey on 5G networks for the internet of things: communication technologies and challenges. IEEE Access PP(99):1

    Google Scholar 

  34. Wang CX, Haider F, Gao X et al (2014) Cellular architecture and key technologies for 5G wireless communication networks. Commun Mag IEEE 52(2):122–130

    Google Scholar 

  35. Islam SMR, Avazov N, Dobre OA et al (2016) Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges. IEEE Commun Surveys Tutorials, PP(99):1

    Google Scholar 

  36. Pham AV, Nguyen DP, Darwish M (2017) High efficiency power amplifiers for 5G wireless communications. In: 2017 Global symposium on millimeter-waves, pp 103–107

    Google Scholar 

  37. Pedersen K, Pocovi G, Steiner J et al (2018) Agile 5G scheduler for improved E2E performance and flexibility for different network implementations. IEEE Commun. Mag. PP(99):2–9

    Google Scholar 

  38. Simsek M, Zhang D, Öhmann D et al (2017) On the flexibility and autonomy of 5G wireless networks. IEEE Access PP(99):1

    Google Scholar 

  39. Chaudhary R, Kumar N, Zeadally S (2017) Network service chaining in fog and cloud computing for the 5G environment: data management and security challenges. IEEE Commun Mag 55(11):114–122

    Google Scholar 

  40. Pan F, Jiang Y, Wen H et al (2017) Physical layer security assisted 5G network security. IEEE Veh Technol Conf, 1–5

    Google Scholar 

  41. Monserrat JF, Mange G, Braun V et al (2015) METIS research advances towards the 5G mobile and wireless system definition. Eurasip J Wireless Commun Networking 2015(1):53

    Google Scholar 

  42. Yuan Y, Zhao X (2015) 5G: vision, scenarios and enabling technologies. ZTE Commun (English edition) 1:3–10

    Google Scholar 

  43. Yonggang Ren, Liang Zhang (2014) Prospect of the fifth generation mobile communication system. Inf Commun 8:255–256

    Google Scholar 

  44. Xiaohu You, Zhiwen Pan, Xiqi Gao et al (2014) Development trend and some key technologies of 5G mobile communications. Sci China Inf Sci 44(5):551–563

    Google Scholar 

  45. Rappaport TS, Sun S, Mayzus R et al (2013) Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1(1):335–349

    Google Scholar 

  46. Jungnickel V, Manolakis K, Zirwas W et al (2014) The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Commun Mag 52(5):44–51

    Google Scholar 

  47. Swindlehurst AL, Ayanoglu E, Heydari P et al (2014) Millimeter-wave massive MIMO: the next wireless revolution? IEEE Commun Mag 52(9):56–62

    Google Scholar 

  48. Björnson E, Sanguinetti L, Hoydis J et al (2014) Optimal design of energy-efficient multi-user MIMO systems: is massive MIMO the answer? IEEE Trans Wireless Commun 14(6):3059–3075

    Google Scholar 

  49. Gao X, Edfors O, Rusek F et al (2015) Massive MIMO performance evaluation based on measured propagation data. IEEE Trans Wireless Commun 14(7):3899–3911

    Google Scholar 

  50. Ngo HQ, Ashikhmin A, Yang H et al (2015) Cell-Free Massive MIMO: Uniformly great service for everyone. In: IEEE International Workshop on Signal Processing Advances in Wireless Communications, pp 201–205

    Google Scholar 

  51. Ngo H, Ashikhmin A, Yang H et al (2016) Cell-free massive MIMO versus small cells. IEEE Trans Wireless Commun PP(99):1

    Google Scholar 

  52. Rao X, Lau VKN (2014) Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems. IEEE Press, pp 3261–3271

    Google Scholar 

  53. Björnson E, Larsson EG, Marzetta TL (2015) Massive MIMO: ten myths and one critical question. IEEE Commun Mag 54(2):114–123

    Google Scholar 

  54. Larsson EG, Edfors O, Tufvesson F et al (2014) Massive MIMO for next generation wireless systems. IEEE Commun Mag 52(2):186–195

    Google Scholar 

  55. Zhang K, Mao Y, Leng S et al (2017) Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks. IEEE Access 4(99):5896–5907

    Google Scholar 

  56. Sabharwal A, Schniter P, Guo D et al (2014) In-band full-duplex wireless: challenges and opportunities. Sel Areas Commun IEEE J 32(9):1637–1652

    Google Scholar 

  57. Zhou M, Song L, Li Y et al (2015) Simultaneous bidirectional link selection in full duplex MIMO systems. IEEE Trans Wireless Commun 14(7):4052–4062

    Google Scholar 

  58. Liao Y, Wang T, Song L et al (2017) Listen-and-talk: protocol design and analysis for full-duplex cognitive radio networks. IEEE Trans Veh Technol 66(1):656–667

    Google Scholar 

  59. Sharma A, Ganti RK, Milleth JK. Joint backhaul-access analysis of full duplex self-backhauling heterogeneous networks. IEEE Trans Wireless Commun 16(3):1727–1740

    Google Scholar 

  60. Duy VH, Dao TT, Zelinka I et al (2016) AETA 2015: recent advances in electrical engineering and related sciences. Springer Publishing Company, Incorporated

    Google Scholar 

  61. Kieu TN, Do DT, Xuan XN et al (2016) Wireless information and power transfer for full duplex relaying Networks: performance analysis. Springer International Publishing

    Google Scholar 

  62. Zheng G (2014) Joint beamforming optimization and power control for full-duplex MIMO two-way relay channel. IEEE Trans Signal Process 63(3):555–566

    MathSciNet  MATH  Google Scholar 

  63. Yue Yao (2015) Key technology prospect of the fifth generation mobile communication system. Telecommun Technol 1(1):18–21

    Google Scholar 

  64. Hosseini K, Hoydis J, Ten Brink S et al (2014) Massive MIMO and small cells: How to densify heterogeneous networks. In: IEEE International Conference on Communications, pp 5442–5447

    Google Scholar 

  65. Yang HH, Geraci G, Quek TQS (2016) Energy-efficient design of MIMO heterogeneous networks With wireless backhaul. IEEE Trans Wireless Commun 15(7):4914–4927

    Google Scholar 

  66. Osseiran A, Braun V, Hidekazu T et al (2014) The foundation of the mobile and wireless communications system for 2020 and beyond: challenges, enablers and technology solutions. In: Vehicular Technology Conference, pp 1–5

    Google Scholar 

  67. Webb W (2007) Wireless communications: the future. Wiley, pp 11–20

    Google Scholar 

  68. Hwang I, Song B, Soliman SS (2013) A holistic view on hyper-dense heterogeneous and small cell networks. Commun. Mag. IEEE 51(6):20–27

    Google Scholar 

  69. Baldemair R, Dahlman E, Parkvall S et al (2013) Future wireless communications. Veh Technol Conf, pp 1–5

    Google Scholar 

  70. Liu S, Wu J, Koh CH et al (2011) A 25 Gb/s(/km2) urban wireless network beyond IMT-advanced. IEEE Commun Mag 49(2):122–129

    Google Scholar 

  71. Jo M, Maksymyuk T, Batista RL et al (2014) A survey of converging solutions for heterogeneous mobile networks. IEEE Wirel Commun 21(6):54–62

    Google Scholar 

  72. Aijaz A, Aghvami H, Amani M (2013) A survey on mobile data offloading: technical and business perspectives. IEEE Wirel Commun 20(2):104–112

    Google Scholar 

  73. Tabrizi H, Farhadi G, Cioffi J (2011) A learning-based network selection method in heterogeneous wireless systems. In: Global Telecommunications Conference, pp 1–5

    Google Scholar 

  74. Yoon SG, Han J, Bahk S (2012) Low-duty mode operation of femto base stations in a densely deployed network environment. In: IEEE international symposium on personal, indoor and mobile radio communications, pp 636–641

    Google Scholar 

  75. Chen M (2015) Research on key technologies of reconfigurable computing for communication baseband signal processing. Southeast University

    Google Scholar 

  76. Poston JD, Horne WD (2005) Discontiguous OFDM considerations for dynamic spectrum access in idle TV channels. In: IEEE international symposium on new frontiers in dynamic spectrum access networks, pp 607–610

    Google Scholar 

  77. Keller T, Hanzo L (2000) Adaptive modulation techniques for duplex OFDM transmission. IEEE Trans Veh Technol 49(5):1893–1906

    Google Scholar 

  78. Truong KT, Heath RW (2013) Effects of channel aging in massive MIMO systems. J Commun Networks 15(4):338–351

    Google Scholar 

  79. Choi J, Chance Z, Love DJ et al (2013) Noncoherent trellis coded quantization: a practical limited feedback technique for massive MIMO systems. IEEE Trans Commun 61(12):5016–5029

    Google Scholar 

  80. Li K, Sharan R, Chen Y et al (2017) Decentralized Baseband Processing for Massive MU-MIMO Systems. IEEE J Emerg Sel Top Circuits Syst PP(99):1

    Google Scholar 

  81. Roger S, Ramiro C, Gonzalez A et al (2012) Fully parallel GPU implementation of a fixed-complexity soft-output MIMO detector. IEEE Trans Veh Technol 61(8):3796–3800

    Google Scholar 

  82. Guenther D, Leupers R, Ascheid G (2016) Efficiency enablers of lightweight SDR for MIMO baseband processing. IEEE Trans Very Large Scale Integr Syst 24(2):567–577

    Google Scholar 

  83. Winter M, Kunze S, Adeva EP et al (2012) A 335 Mb/s 3.9 mm 265 nm CMOS flexible MIMO detection-decoding engine achieving 4G wireless data rates. In: Solid-state circuits conference digest of technical papers, pp 216–218

    Google Scholar 

  84. Noethen B, Arnold O, Perez Adeva E et al (2014) 10.7 A 105GOPS 36 mm 2 heterogeneous SDR MPSoC with energy-aware dynamic scheduling and iterative detection-decoding for 4G in 65 nm CMOS. In: Solid-state circuits conference digest of technical papers, pp 188–189

    Google Scholar 

  85. Chen C, Tang W, Zhang Z (2015) 18.7 A 2.4 mm 2 130 mW MMSE-nonbinary-LDPC iterative detector-decoder for 4 × 4 256-QAM MIMO in 65 nm CMOS. In: Solid-state circuits conference, pp 1–3

    Google Scholar 

  86. Studer C, Fateh S, Seethaler D (2011) ASIC implementation of soft-input soft-output MIMO detection using MMSE parallel interference cancellation. IEEE J Solid-State Circuits 46(7):1754–1765

    Google Scholar 

  87. Tang W, Prabhu H, Liu L et al (2018) A 1.8 Gb/s 70.6 pJ/b 128x16 Link-Adaptive Near-Optimal Massive MIMO Detector in 28 nm UTBB-FDSOI. In: Solid-state circuits conference digest of technical papers, pp 60–61

    Google Scholar 

  88. Prabhu H, Rodrigues JN, Liu L et al (2017) 3.6 A 60 pJ/b 300 Mb/s 128 × 8 massive MIMO precoder-detector in 28 nm FD-SOI. In: Solid-state circuits conference digest of technical papers, pp 60–61

    Google Scholar 

  89. Chen YT, Cheng CC, Tsai TL et al (2017) A 501 mW 7.6l Gb/s integrated message-passing detector and decoder for polar-coded massive MIMO systems. In: VLSI Circuits, pp C330–C331

    Google Scholar 

  90. Tang W, Chen CH, Zhang ZA 0.58 mm 2 2.76 Gb/s 79.8 pJ/b 256-QAM massive MIMO message-passing detector. In: VLSI Circuits, pp 1–2

    Google Scholar 

  91. Todman TJ, Constantinides GA, Wilton SJE et al (2005) Reconfigurable computing: Architectures and design methods. IEE Proc—Comput Digital Tech 152(2):193–207

    Google Scholar 

  92. Shaojun W, Leibo L, Shouyi Y (2014) Reconfigurable computing. Science Press

    Google Scholar 

  93. Liu L, Li Z, Chen Y et al (2017) HReA: an energy-efficient embedded dynamically reconfigurable fabric for 13-dwarfs processing. IEEE Trans. Circuits Syst II Express Briefs PP(99):1

    Google Scholar 

  94. Liu L, Wang J, Zhu J et al (2016) TLIA: efficient reconfigurable architecture for control-intensive kernels with triggered-long-instructions. IEEE Trans Parallel Distrib Syst 27(7):2143–2154

    Google Scholar 

  95. Radunovic B, Milutinovic VM (1998) A survey of reconfigurable computing architectures. In: International workshop on Field programmable logic and applications, pp 376–385

    Google Scholar 

  96. Atak O, Atalar A (2013) BilRC: an execution triggered coarse grained reconfigurable architecture. IEEE Trans Very Large Scale Integr Syst 21(7):1285–1298

    Google Scholar 

  97. Liu L, Chen Y, Yin S et al (2017) CDPM: context-directed pattern matching prefetching to improve coarse-grained reconfigurable array performance. IEEE Trans Comput-Aided Des Integr Circuits Syst PP(99):1

    Google Scholar 

  98. Estrin G (1960) Organization of computer systems-the fixed plus variable structure computer. In: AFIPS, pp 3–40

    Google Scholar 

  99. Zhang C, Liu L, Marković D et al (2015) A heterogeneous reconfigurable cell array for MIMO signal processing. IEEE Trans Circuits Syst I Regul Pap 62(3):733–742

    MathSciNet  Google Scholar 

  100. Bougard B, Sutter BD, Verkest D et al (2008) A coarse-grained array accelerator for software-defined radio baseband processing. Micro IEEE 28(4):41–50

    Google Scholar 

  101. Ahmad U, Li M, Appeltans R et al (2013) Exploration of lattice reduction aided soft-output MIMO detection on a DLP/ILP baseband processor. IEEE Trans Signal Process 61(23):5878–5892

    MathSciNet  MATH  Google Scholar 

  102. Chen X, Minwegen A, Hassan Y et al (2015) FLEXDET: flexible, efficient multi-mode MIMO detection using reconfigurable ASIP. IEEE Trans Very Large Scale Integr Syst 23(10):2173–2186

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leibo Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd. and Science Press, Beijing, China

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, L., Peng, G., Wei, S. (2019). Introduction. In: Massive MIMO Detection Algorithm and VLSI Architecture. Springer, Singapore. https://doi.org/10.1007/978-981-13-6362-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6362-7_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6361-0

  • Online ISBN: 978-981-13-6362-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics